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PREFACE

Trts book is written for graduate students and for under-
graduates whose degree courses include more matrix theory
than & text-book of elementary properties will provide. InitI
have tried to give an account of the theory of finite matrices,
including their invariant factors and clementary divigors, which
~ can be read with reasonable ease by mathematicians who are
not specialists in this partienlar field. I have worked with the\
ordinary numbers of analysis and have not ‘considered,, §ane
for an odd refevence or two, the demands of an abstract aI‘gebfa.
My aim throughout has been to make the arguru{}i‘b. simple
and straightforward. Ks)

When T began the book I expected that the le.}le of it would
be concerned with the presentation of results long since known
in some form or other. On reaching thechapter on functions
of matrices 1 found that, sta,rting:ﬁéin & few ‘well-known’
facts, the theory unfolded itself nattwally and- easily, but that
only patches of it here and the;b;a."ppeared t0 have been pub-
lished before. Accordingly, Gliap%cr V is largely a first essay atb
a connected account of @his”part of the theory. _

My indebtedness tQ-0 ther books and to research papers is
vory great. The réader who wishes to acquire a knowledge of
the wider field Within which my own limited treatment lies
should consu,lt;éﬁiong others: .

H. W. Ll"}ﬁhbu]l and A. C. Aitken, An Iniroduction to the -
Theory ﬁ»@émomﬁml Matrices (Blackie, 1932);

WV’(\D Hodge and D. Pedoe, Methods of Algebraic Geometry

(Qaubridge, 1947); -

)G, Julia, Introduciion mathématique aux théories quantiques
(Gauthier-Villars, 1949), Part I on Finite Matrices and Part II
on Hilbert Space and Infinite Matrices; _

A. A. Albert, Modern Higher Algebra (Chicago, 1937);

J. H. M. Wedderburn, Lectures on Matrices (Amer. Math, Soc.
Colloquium Publications, vol. xvii, 1834);

(1. 0. MacDuffce, The Theory of Matrices (Chelsea Publishing
Co., New York, 1946: reprint of first edition).
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For anything concerning matrices that was known prior to
1932 MacDuffee’s book is invaluable. A similar account of
what has been done since 1932 would be a great asset; is it too
much to hope that a scholar might one day write it or edit a
series of B.8¢. and Ph.D. theses written to that end? The
~ present book makes no pretence to be complete, even in the
* central topics of finite matrices: it attempts a clear and readable
account of the principal theorems and no more.

T end with an acknowledgement of my debt to the staff of t@\
Clarendon Press. I have no immediate plans for ‘Lnother Lok
with which to tax their skill and forbearance and soy "(’m ﬁ}llb
occasion, I wish particularly to thank all of them forthe way in
which, over a period of some fifteen years, a sen’és\of not too
tidy manuscripts has been transformed into wpﬂﬁyﬁnted bocks.

HERTFORD COLLEGE, 0XFORD A W.I. F.

K7\
April 1951 {¢
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CHAPTER I
-INTRODUCTION

1. Scope of the chapter .
THE aim of this introductory chapter is to provide a résumé
of the more elementary properties of matrices. I have thought
it useful, for both writer and reader, to note explicitly, even
though it be briefly and sketchily, the accepted facts aboub\\
matrices on which the later chapters will be based. Some pro6is,
but not all, will be given. I have tried to hold the bailg,ncb
between brevity and clarity and, accordingly, I have-amitted
many details that would find a place in a full accgﬁjk of what

is given here in outline. O
2, Notation N

{a) A set of mn numbers arranged i ¢olumns and n rows
is called a matrix. Thus OY

11 2 ,72-‘-2"@11%

ty agg:i~~..2 Ty

qﬁlzﬁ\aﬂz Y T, |
is o matrix. The squéi'e bracket is a conventional symbol which
is read as ‘the metyix’. The individual numbers are referred
to as the ELEME’NTé OF THE MATRIX.

We shallnpbi'ﬁally use the square bracket whenever we wish

to indica%@..ﬁﬁat an array of numbers is fo be considered as o

math&\t us T2 Taseens @, |

N ) .
ittdjeates that the n letters xy, Xg, ¥n are to be considered as
aVONE-ROW MATRIX. To indicate that n letters %, @y, 2y
are to be considered s a ONE-COLUMN MATRIX We US¢ the special

notation {xi, Lgyeees w-n,}°

When a matrix has # rows and n columns we refer to it_a as &
SQUARE MATRIX OF ORDER #. :

t Some writers insist that the laws of addition and mu]tiplica.tio_n must be
laid down before the use of the word matrix cen be justified.
5376 - ’
B



2 : INTRODUCTION

(5) Capital italic letters 4, B,..., X will be used to denote
-mafrices, in general square matrices of order n. To indicate
the actual elements of a matrix we shall write down the element
in the 7th row and kth column; thus

=[en), B =[fu]
means that 4 has the element a,; in the ith row and kth column,
while B has the element £, in the ith row and kth column. .
The DETERMINANT whose elements are precisely those (}f\\a
square matrix 4 is denoted by }4|. When |4| = 0 the matmx

. -1is said to be SINGULAR and when |4| == 0 the matrlx is $aid to
be NON-SINGULAR.

3

We sometimes use a special notation for m ti-iE\es having &
single row or a single célumn. Clarendon Jebters a, b,..
denote single-column matrices and (antici ting the later dcﬁm—
tion of a transpose) a’, b’,..., x’ denote single-row matrices; thus

X = {.’L‘l, ’xﬂ-} X‘ '_\ [xli n]

means that x is the single- column ‘matrix and x’ the single-
row matrix having the elemen‘h& shown.

{¢} It being understood that unless the contrary is stated,
all literal suffixes run fedut 1 to n, we shall use the SUMMATION
CONVENTION for rep%&, literal suffixes. With this convention

R it
NG,  denotes z Qe %y
%/ =1

- and \” sy denotes z z s Ly
r=1g=
011 the\other hand, a repeated numerical suffix, such as the
su@x 1in g,y 2;, will not imply a summation.

\“When the ocoasion arises we shall enclose a literal suffix in
brackets to denote that there is to be no summation with
Tespect fo that particular suffix; thus

T
Cpeney  denotes > a2
r=1

Tar
there being no summation with respect to s.

{d} The square matrix of order » having unity in each place
on its leadmg diagonal and zero elsewhere is called the UxIT
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MATRIX of order #; it is denoted by I. Sometimes we use I,
I,,... to denote unit matrix of order 7, s,.... _

A matrix having zero in every place Is called & NULL MATRIX
and is denoted by 0. '

A- square matrix of order # whose only non-zero elements
ocenr in its leading diagonal is called a DIAGONAL MATRIX.

3. Addition and multiplication

(a) Addition- (a1 [by] = [oss bl DS
The definition applies to any two matrices A and B, not neges- -
sarily square, provided that each has the same number ofPows -
and each has the same number of columns. Moreo,x(@r,’"from

(6) Multiplication.

[} X [bai) = [20xbudyi ' 2y

The definition applics to any two \méati'ices A and B, not
necessarily square, provided thab {16, mumber of columns in
A is equal to the number of rovs;g"m".B. The product A B has
as many yows as 4 and as ma.gy'éélunms as B.

From the definition, N\
A(&&G} = AB+AC
and ;({@4—’ 4 = BA+CA. .
Further, N [ X bad % Lo,

whether the tni'pié"product be formed by
' L7 @Aape or ABO),

is equabto” (3623 0] @
a,r!d{is?commonly denoted by ABC. Products of four or more
\'m§$ﬁces are formed on the same pattern: thus
' ABC ... Z = [onb), 0 e 2o

the 3, k& being the only suffixes that do not imply summation.
By their definifions, 4.B and BA are matrices whose elements
are formed by different provesses and, in general, 4B is not
equal to BA. On the other hand
Al =IA=A4A

for every square matrix 4 of -order #.
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~ Finally, the equation 4B = 0 may be true when neither A4
nor B is a null matrix; but if either 4 or B is known to bhe

non-singular when 4B = 0, then the other is nécessarily & null ~
matrix, '

4, Related matrices

{a} The reciprocal of a matriz.

When A = [a;], the determinant obtained from 4] h
deleting the rth row and sth column and multiplying by.the
sign-factor (—1)"+¢ ig denoted by A4,; it is called the cofaetor
of 4 in |4]. The matrixt 4 W

ki

S
i

is called the ADJUGATE or ADJOINT of A. \\\ .
It is & well-known result in the theory of det;’e}mina,nts that
Gy =0 (i3 k) SO (4)
and Gy da; = 4] (i = {,2\',.5;, n). _(5)

Hence, when 4 is a non-singular mad;ﬁk,
[l X [457 141] f.Id}g‘Am'/ 1A} =1
- and similarly, on working with Golumus instead of rows at lines
4) and (5), .
) and (3 [ightd 1 [ag] = 1.
Accordingly, we call theymatrix
. [def 141]
the RECTPROCAL 0 "4 and denote it by 4-t,
. When Asigha singular matrix, |4} = 0 and the division by |4 is
" no lon eg”‘}rh:lid: the reciprocal is not then definable.
o I}i[{gljfig\ver A" is the only matrix with the Property that its
: pro@uct by 4 is equal to 1. For, if RA = I, then '
QO (B—4H4 = RA—T — ¢,
on multiplying by 42, we get. '
- _ (R—A1)44-1 — o,
~or, since A4~ = [, R4,
Thus a matrix R for which RA = I must be equal to A-1,
Similarly, 4R = T irplies B = 4-1, '

T Notice that dz; comes in the ith row and kth column.
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(b) The powers of & matriz. ' '
. The notations 42, 43,..., stand for 44, A4%...; A% 473,
. stand for A-14-1, A142,.. and with this notation
AT As = AN AT = AT
for all integer values of r and 8 (positive, negative, or zero)
provided that A°is interpreted to be 1. '
{¢) The transpose of @ matrix. A
The matrix whose rth eolumn (r = 1,2,...) is the rth row of\
A is called the TRANSPOSE of 4 and is commonly denoted by
A’ Thus A= [a{k] gives A = [‘g’ki]- R \J
When A = A’, that is when a,; = ay;, the ma’pﬁ%\ff’ is gald
t0 be SYMMETRICAL. _ U\
(@) Functions of @ mairiz. -
. When ay, t,..., @, 8TC numbers and  °7
o flz) = %—i—alw—l—'..{‘%ﬁépx?
is & polynomial in a single va,ria,b}g‘;;c;'fhe matrix-sumt
o g I-+-aq RN +a, 47
is a single matrix that is cofiveniently denoted by f(4). If this
matrix is non-singulaxj,@t has a reciprocal and this is eon-
voniently denoted g Hf(4). '
The product ofhis by g(4), where gz} is another polynomial
in x, yields a w@tefx that i3 conveniently denoted by ¢(4)/f(4}.
The resultingamatrix is said to be a rational function of 4.

\/

~
. £ )
5. Th&kﬂn’v of reversal for transposes and reciprocals

e A=[e]  B=[bwl
\fmlen . AB=[agbyl  (AB) = [mbil:
But BIA" = [byq] X [
T o= [by ]

= [az;0;] = (AB)'.

+ The matriz a,d, where ¢, is an ardinary number, is defined to be it_he o
matrix whose elements are ¢, times the elements of 45 e.g. o

2[2 E] - [i 1801‘



6 " INTRODUCTION

Hence, the transpose of a product is the product of the transposes
taken in the reverse order.

By extension, (ABC) = C'B'4’
and {4B..K) =K'..B'A".
Apain _
(BAA-1)X(AB) = B-14-'AB = B-Y]B = B-'B — ]
~ and, similarly, (AByx (B4 = I. Q’\\\

Accordingly, the reciprocal of a product is the producza,‘f)_:)""ﬁe»e
reciprocals taken in the reverse order. “
By extension, (ABO) = C-1B-14-1 ,='.\\ \
and - (AB..K)t = K-l B4
6. Simple matrix equations N
(«) When A, B are given square I{L@t{;iéés of order » and B
is non-singular, the matrix equati 01:.1&3\
4=BX, 2=-7¥B
in the ‘unknowns’ X and ngs‘t;jfé“the unique solutions
X =B, Y~ 451
That these are solp@éﬁs follows Iat once from the fact that
> BB-1= B-1B - ],
Moreover, each, %&ﬁtion is unique: if, for example, BR is also
equal to 4,‘: ¥hen B(R—X) = 0 and, since B is non-smgul&r,

_ \§ R—X = 0.
: (Qj@%e unique solution of the matrix equation

o~ ’ o7 . Ax — b,

' Eﬁere 4 is a non-singular square matrix of order » and x,
b are single-column matrices of n TOWs, i X = A-tb. It pro-
vides the solution of the » Linear equations

ey =b; (i=1,2,.,n).
Similarly, the matrix equation .
yfA = bf
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" has the solution ¥’ = b'4-* and provides the solution of the n
equa.tlons YOy = b,; ('ﬂ: = 1, 2,..., ??a}. '

7. Submatrices
) P Pz Pis
A matrix P=|psy Pz P
. _ a1 Pz DPas
“can be denoted, on introducing symbols P, B, By, F,, where '\\\ '

P = [3;11 Pm]’ P = I:i;la]’ i: MY
o1 Paz Pz LAY

P=[py Pul P, = [pal x\\\ 3
P, P .
h [ i ‘3] .
Y - B 5 \";
The matrices Py, By, P, P ate called subdatrices of P.

When a second matrix @ is divided\into submatrices on the
same pattern as P, a liftle caleulation shows that

(B, RO
g *Qf.\[‘Pa*TQa PAQ
o - [RGB, PleJrPng.
by 5Q1+P4Q3 PaQ*a‘l‘Pa.Q

In this sum anc}ﬁrdduct the ‘elements’ are themselves matrices;
for example, Pl\+ @Q, is » matrix of two rows and two columns, -
while 7, Qﬁhﬁ Q, is a matrix of one row and two columns.

Th(;\ mmetry of the previous example is not an essential
feq{t{ﬁ?e of the process. In multiplication, for example, what is
segsontial is that, in each P, @, that occurs, F, shall have ag many
lumns as @, has rows. As an illustration of a non-sym-
metrical arrangement (it has no other interest and is devised

purely as an illustration), let
By = [P Pis) Py = [p1sl, -

1. Tz s 14
e Ga1 Toz oz 12 a4

o = {Ga1 a2 as); Qs = [9as)-

and
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Then 1 T2 Gia ! G
[Prr Piz  Pra]lX |0y G Fog | oy

P31 T3 Gas | 931
=B Bax 2 %]

Q21 sz
=[Py Qu+Pa@n PyQutP, % )
=[Pula Pulie Putis Pu Trea); . ’\\\
the summation with regard to & being for k = 1, 2, 3. D
8. The rank of a matrix A\
(@) Minors. ON

7/ Let A be a matrix, not necessarily squa.re';;\From it delete
all rows save a certain r rows and all coluhins save a certain
columns. When # > 1 the elements thafremain form a square
matrix of order r and the determinh\ni% of this matrix is called

a minor of 4 of order r. A singleselement of 4 may be con-
gidered to he a minor of order $3*

(8) Definition of rank.
A matriz has rank r (3»1) when r is the largest integer for which
we can state that ‘notxAix}L minors of order r are zero’.

¢\ :
To understangd the definition we note that a minor of order
k-1 can be expanded by its first row as & sum of multiples of

- minors of ople®’%, so that if all minors of order k are zero, then

. all minors of order k41 are zero, The converse is not true;

for e_zga\.ém}}le, in’ 1 2 4 7
) 05 1 6
~0° 102 3
N L2013

the only minor of order 4 is the determinans of the matrix and
its value is zero, but the minor of order 3

1 2 4
0 5 1
10 2

i8 not equal to zero.
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Tt is sometimes convenient to speak of a nult matrix, in which
every element is zero, as being of rank zero. '

{¢) Linear dependence.
Consider an array of three rows

ay, by, - 2
Gy, Day e Za
- ay, bgy e %y ) N
1f the three Tows are related in such a way that there are\
numbers A, and A, for which Re N
P2 = ApitAaps (p =2 b,...s2) U (8) -

we say that the third row is the sUM OF MULTIJE’L}:?SéiX; and Ag)
of the first and socond rows. When the threg rows, or two of
them, are related in such a way that there Aeiumbers Ay, Ay,
)5, of which two at least are not Zero, apd\for which

Apitapetlaps =0 (a5 @, byeens ), A7)
we say that the three rows are LINFARLY DEPDNDENY, We say
that the rows are LINEARLY n{-pﬁ:}}fmirDENT if (7) is satisfied only
when A, == A = A3 = 0. )

The definitions extend fo ’a;iy pumber of rows or of columns.
(&) Rank and Zinea,ré@g}agndeme.

The tank of a fiatfix is equal to the number of linearly
independent rows in the matrix, as the following theorem shows. E

Let A be @atriz of rank v and let @ non-2ero minor of Aof _
order ¥ ?@a@c}éiements from the ath, Bth,..., kih rows of A (r rows
in alljnEet A have o further row, say the 6th. Thent there are
nuiders Ao; Agso.., A for which .
\:\ pg = )‘aP_a+)‘BPﬁ+--°+7‘xPx» - )
\so that the Oth row is the sum of multiples of the oth, Bth;.., wth
rOWS.

-

Thus we can, when the number of rows of A exceeds its rank
r, select, r rows of 4 and cxpress every other Tow as a sum of
multiples of the r selected rows. Moreover, it is not possible fo
+ This and othor properties noted in this section are proved in Terrar,

Algebra (Oxford, 1941), at chapter viti. Further references to this bobk will
be indicated by ¥. and the appropriate page number. T
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select ¢ rows of A, where ¢ << r, and then express every other row
as @ sum of multiples of the g selected rows.
There are similar results for columns.

9. Linear equations
Consider the m linear equations

’

ki
T =0, (i=1,..m) (8),
kgl thvE i \\\
in the » unknowns ,,..., z,. Let the matrices 4, Bbe giver by
o ST 4 Qu . Gy \,
A _ . . - . R _B —_— . . . ';'\“"’:’ ,
1 Lo D1 - e \ um-n, bm

let 4 be of rank r and B of rank #, Then, fromi }the nature of
~ definition of rank, r < #'; moreover :;\\J

When v = v the equations (8) are consistent (that is, there is at
least one set of values of the unknownsthat satisfies all the equa-

tions) and when r << ' the equatign&ii‘é) are not consistent,

When all the b; in (8) are zeto, we are concerned with what
are known as HOMOGENEO}{S\ LINEAR EQUATIONS, namely

kglqi,;éw’: 0 (¢=1,..,m). (9)

The ranks » and.r’: of the above discussion are now necessarily
equal and the aduations are always consistent. On the other
hand, the eqitions are always satisfied by

. \\\’ Fl=Ty ==, =0
and, Qﬁié may be the only solution. The following theorem

dramtarizes the more important results about such a set of
eqfiations,

Let 4, in (9), be of rank r. Then r < n, since 4 has n
columng.

D) When v = u, the equations (9) have no solution other than

=Ty =L =, = 0.

t For proofs and further details, see F. 98-105,
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(i) When r = n—1, the equations have effectively only one
non-zero solutiont and if this is

| by fa o b
all other non-zero solutions are of the form
>‘§1) . Ag?.! raty )‘gn'

(ili) When r < n—1, the equations (9} have n—r linearly inde-
pendent non-zero solutions and every ROM-2ere solution can be
expressed as a sum of multiples of these n—r solutions. \

2\.7

10. The rank of a product of two matrices - 9
We note two important theorems of frequent applieation.
(2) The rank of o product AB cannot exceed the ropk of either

7

Jactor. ) ¢ x\
() When B is @ non-singular square math of the same order
as the square matriz A, the matrices D
A, AB, B4
all have the same rank. . \ ™

The proof of these theorerqu'i{c’lllc;ws fairly directly from the
following result,] one that isdften used apart from its immediate
connexion with the ranks of matrices.

(¢} Let A have ng fwe and » columns and let B have n rows
and n, columns; 'hhén AB has n, Tows and n, columns. Euery
minor of AB of prder greater than n, if there are such mMINors, 18
equal to ze-rg{@m? cwery minor of AB of order t < m is either the
product, af @ t-rowed minor of A by a t-rowed minor of B or is

the sm@w ‘@ number of such products.

};Q}}ié contains as a special case the more elementary result
“NWhen A and B are square matrices of the same order, the
Yeterminant |AB] = |A| X |Bl. The proof of this follows at once
from (2) of § 3. Its extension to & product of three or more

matrices, | 4po . K| = |A}.B].[C]. .. .|Kl,
is also a direct consequence of the definition of a product of

matrices.

4 *Non-zero’ because at least one { is different from zero.
t F. 109.
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11. The characteristic equation of a matrix

When 4 is the square matrix [a;.], the determinant of the
matrix A—Al is given by

fu—A ey . . g,
A= | % Gyp—A . . @an
| 1 By e gy —A ~\
N\
When expanded, this determinant is of the form D

FO = (=1rprtptt4p,), o)
- Where the p, are polynomials in the n? clements a%~f’g‘he roots
| of the equation AN =0 \s\ (11)

are called the LATENT R00OTS of the matrix M and the equation
Tbself is called the cmARACTERISTIC EQU:},’I{‘Q}I& of A. Moreover?
(@) Every square matriz sutisfies itg atop characteristic equation;
that is, if O
A=A = (~ 1 Qeg a1t 4 p,),
then A7+-p, A”"I—F;.}:af—lf)n_lzﬁl—{-pﬂf = 0.

(8) The characteristic ?:ao\ié of a symmetrical matrix having real
elements are all real nm’{a?)‘ers.

£

\ <\ . .
(¢) The charactedistic roots of a Hermitian matrie (ef. § 13) are
all real numbers.

12. -Specig.-(zio\_'t'étions
(@) Thedingonal matriz.
Thenbtation diagey, xy,.., o)

”inq%éates & matrix, of » rows and columns, which has the

Selements shown in itg leading diagonal and zeros in all other
positions. The extension of the notation to cover submatrices
isa comp}gm one; thus, when

A4, = [“11 lE\‘51:], A — [“'sa 5T
. . a1 Ggaf 2 Ggg @y’
the matrix : - diag{d,, 4.}

T F. 111 for (a); F. 146 for 3); F. 158, oy, 14, for (c).



INTRODUCTION 13

. @y o 0 O

is, in full, Uy Qgp O 0
' 0 0 ap Oy
0 0 ayy oy

() Functions of diagonal matrices.

Let A;, As,..., 4; be square matrices of orders 7y, Tgeeenr %

and let By, Ba,..., By be asccond set of squa.re madrices of orders
N\

1, Faserer ¥pn Leh N\
A= diag{Al, o A, B = diag{By, By, B yf.‘;,
Then - AB = dla,o{Al By, Ay By,... JAL B, N\ (12)

as can be seen by considering the matrix pI'Od{C’d} set out in
the form

4, o . . © By 0,00 0
v 10 4, . . 6 0o BY. . 0O
AR S B\ ..
o 0 . . A, 070 . . By

The non-zere elements of the m;frer products of the first r; rows
of A (when A is set out im il as a matrix of ry+ref .ty
rows) by the first r; ¢ol fhs of B (when B is similarly set out -
in full) are precisel $he inner products of the rows of A, by
the columns of B:\Ihey vield the submatrix 4, By; and g0
for the other aLements of (12).

In partml{la‘r, when B; = 4; (i = ,.... k), the result {12) gives

% . A = ding{d}, 43,..., A% |

andj'fv\e may build from this the result
3

\/ o f'A) = dlag{f 1) f 2): (Ak)}a (13)

where f(4) is any polynomial in 4 or is & rational functmn
g(4)/R(A), provided A(A4) is not a gingular matrix.

{c) Special types of LTI,
We use 4’ to denote the transpose of 4, and 4 %o denote the -
matrix whose elements are the conjugate complexest of the

+ When z = a-iy, £ = v—iy.
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elements of 4. The following list defines the terms thers in-
~ troduced:

é' =4 4 is symmetric  (a; = ay),
.4’A =1 A is orthogonal,
A4 =1 A is unitary,
A= -4 A is skew-symmetric, A
A= -4 A is skew-hermitian. N\
O
QO ?
»
N
e\o
O
NN
N\



CHAPTER IT
- EQUIVALENT MATRICES

Much of this chapter is teken wp by details about the ‘elementary
sransformations’ of & matrix, On getting to the end of the chapter,
-the reader moay woll feel a sense of anti-climax, in that these details
have led to a result {compare Theorem 2, p. 23) which is s0 gene_ra.l
that it s of litile use ad it stands, The detail is, however, & hasis for
the work of later chapters and this, rather than the result immediately o\ -
obtained, justifies its inclusion. \
1. Preliminary N d
1.1. Field of numbers : A\
DerrNimioN 1. 4 sef of numbers, real or comples; s Said fo

g . .y W
form a FIELD OF NUMBERS if i satisfies the conditions

o P

(i) whenever r, s belong to the set,

rts,  r—s  TX& o
also belong to the sei; : :\\“ :
(i) whenever r, s belong to the satj':éed's is not zero,
| - £
also belongs to the set. N7

L8 :
- N\, .
1.2. Elementary tm*@sf@matwns of matrices
DEFINITION 2. TVe> ELEMENTARY TRANSFORMATIONS of @

»

matrie are W o
(i) the int@g’;ﬁdﬁge of two rows or of twoe cobumns;
(ii) th ez%ﬁitiplécatéon of the elements of a row {or column) by

N

@ num@{?\ ther than 2ero;

(nt)the addition to the elements in one row (or column} of a
@@lﬁple of the elements in another row (or column).

Simple examples of (ii) and (i) are:

(i) [1 i] transformed fo [1 Sx]

2 2 dxzl’
.o f1 8] 1 3ty
(di1} [ 9 4] tI&gsfomed to [ 2 4t 23,!] .

These examples are sufficient to illustrate the point that the
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‘number”’ in (if} and the ‘multiple’ in (iii) may or may not corre-
spond to numbers in a given field F (Definition 2 does not, re-
" quire the @ and y of the examples to helong to any particular
field) and it is as well, before going farther, to give a precise
definition of an elementary transformation within a grven field,

DerivrTION 3, The ELEMENTARY TRANSFORMATIONS of a
mairiz WITHIN A GIVEN FIELD F gre A

- (1) the interchange of two rows or of two columns; , N

(i) the multiplication of the elements of @ row (or coly&ﬁag)x by
@ number, other than zero, belonging to F; O

(i) the addition to the elemenis in one row (or, c\b‘ﬁﬁmn) of a
multiple of the elements in another row .(Q’x}:olumn), the
multiple in question being a number thu¥ belongs o F.

I have thought it worth while to stre s\phis point because
attention to 1t helps one to realize the difference between what
one can and cannot do when the trs,h\éfgirm&tions are restricted

 to those within a given field. Fon;}‘:ib;}:nple, on denoting ‘trans-

forms into’ by the symbol >
345 64295] 8445 0 L[5 0
1 4 \ i 2 )] 2
by transformations Wgtlén the field of rational numbers—the
steps are col. 2——‘2'>acol. 1) and col. 13 (col. 2). On the
other hand, ’F%% 7+2«»’5] N [34-«!5 0
_ ) \“ o1 4 ! x
is not Poﬁ:gijﬁle by transformations within this field; to obtain
a zerg.?q\ﬁ e position shown, we must use an irrational multiple.
. 1‘”\3 Elementary transformations as matriz mulliplications
\ Throughout this sub-section A denotes g square matrix whose
ith row s @G Gy .. a -
~and I denotes the unit matrix of order n,
(i) The enterchange of two rows.
' Let Z;, 4,; denote the result of interchanging the ith and
Jth rows of I and of 4 respectively. Then

Iﬁ A == A‘i,f‘
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For example, with n =4,¢=2,j = 4,

i 0 00 reg - - Gy Gy - o+ g
0 0 0 1) % Gog | __ | % gy
001 ¢ 551 3 3 tgq
¢ 1 0 0 Qg Xy a1 [ 9

Similarly, if 1%, A% denote the matrices obtained by inter-
changing the 7th and jth columns, '

A = A#, \{
Before proceeding we note that . PR \ :.;x
(@) Iy= I#, gothat I; = (Iy)'s | \ O
) I =1, sothat I;=()™h \\

(c) the value of the determinant I is £L.8"

We note also that pre-multiplication by I intérchanges two
rows of A4 and post-multiplication interghjs}rges two columns,
while the product I, ALY :\\\\\: y .

" ja given by interchanging two Towmof -4 and then interchanging
two columns in the resuls. Furtliet, by (@) and (b) above, (1) may
be written in either of the forins

AT @
SN oy ATY). (3)

| (i) The mult@pﬁg’aﬁon of the elertents of a row by @ nwmber
other th\{{@\ééro. _
Let Kgl;’.};‘the matrix derived from I by replacing the 1 in
the ith{ditgonal position by k. Then
. < ) P K4 -
Sathe result of multiplying the ith row of 4 by k; for example,
| a b ¢ a b ¢ '
1 L xld e fl=d e [
I T y 2z ke hy kel
Similarly, AK; is the result of multiplying the ith column of
A by k. Again, as in (i), pre-multiplication affects rows and

post-multiplication affects columns.
- BaT8 C
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We note the properties
- (@) K, is & symmetrical matrix and its reciprocal (K;) s g
matrix of the same type having k- instead of % in the ith
diagonal place.

{6) When % is a number belonging to a given field F, the
elements of X; all belong to F, for every field must contain 1,
[We note this obvious point because we shall wish to quote it
later: it has, of course, no importance in itsclf.] \<

{¢) The value of the determinant | A is k. O\

(i) The addition to the elements n one row of @ m’a}j{}iyﬁe of

the elements in another row. N\
Let 4 = 5; let Hy; be the matrix having all i a‘;a%ments Zero
-8ave for the one non-zero element, », where the)sth row crosses

the jth column. Then RS

| Hyd (4 = (o)
is a matrix whose ith row is tindes the jth row of 4 and
whose other rows consist of ZErog s, for example,

. . . au &12“."6‘?}3 . . .
- kI X ay Ud N Oy | = | By hayy  Rag,|.
e gy (Bgy Ay . . .

It follows that the reg&]‘b of adding % times the jth row of 4
to its ith row is givext by
L0 (I+H)A. (4)
Similarly &8 is a matrix whose Jth column is % times the
ith colum;g‘\,of 4 and whose other columns congist of zeros,
while thé”fesult of adding % times the ith column of 4 to its
: Jﬂ}\com ® AI-Hy). (5)
\\3 We note the properties '
() H} =0, (I+Hﬁ)(1—-Hﬁ) =1,
() The elements of “+;; belong to a given field F if and
only if the multiple 2 belongs to F. '

. (e) The value of the determinang |+ Hy} is unity whatever
be the value of %. Thig is particularly important when we come
to deal (Chap. ITI) with A-matrices, where % will be g poly-
nomial in s variable A; the value of the determinant |7 +Hy|

;
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wilt still be unity and hence will be independent of A (the major
point at issue).

1.4. Details of notation _

We introduce the definitien that follows with a view to con-
venience of diction at a later stage.

DeenxarioN 4. When XA or AX is the result of an elementary
transformation of A, we say that X is the madrix of that trans-
Formation. ¥ _ "\

When X is an I, or I%, we say it is of Type I; ' O '

when X is a K, we say it is of Type II; O

when X is an I+H,,, we say it is of Type IIL A\

Moreover ' \\ '

(i) when X is of Type I, it is its own reciprocaﬂfas is obvious
from the nature of things; to interchange the ith and
jth rows twice in succession is td Jeave the rows un-
altered|; N\ \‘

{ii) when X is of Type IT, its ;eéﬁproca,l is also of Type II
[we merely replace & by j’gﬁ"fj’;‘

(iil) when X is of Type IILts reciprocal is also of Type ILI
[the reciprocal of - Hy, is, by (a), I—Hy; and the latter
is got from the 'f(']’XﬁléI‘ by writing —A instead of --A].

To sum up, the m‘&ﬁﬁx X of an clementary transformation
is non-singular; iy reciprocal X1 is also the matrix of an
elementary tra’ms’formation; moreover, X and X% are of the
game type".‘.‘\’"

1.5. Wences of elementary transformations .
I@t&kl,..., X, and ¥j,..., ¥, be the matrices of elementar
',tqlal“ﬁéforma,tions; let :
N/ U=X,..%X,, V=FK.FY,
and B=UAV, _

Then B is a matrix derived from 4 by a sequence of ele-
mentary transformations, Now U and V are non-singular and
have reciprocals given by

U= X;1.. X1, VA=Y;1.Y;1! \

+ We shall not normally need to specify whether the product in guestion

is X4 or AX.
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end, since X;1..., ¥7! are the matrices of elementary thang. )

formations (§ 1.4) and
A = U-1By-1

Aisderived from Bby a sequence of elementary transformations,

Hence, if B is derived from 4 by & sequence of elementary

transformations, then 4 can be derived from B by a sequence
of elementary transformations. This fact Justifies the definition
now to be given. ' &

N
1.6. Formal definition of equivalence )

#\.7

DermviTion 5. Two matrices are equivalent if it is ic8sible fo

tions.

As we saw in § 1.5, when 4 and B are equliu\cmiént there are
non-singular matrices I/ and V for which

o \J
UAV =B, U-ByVA)= 4. (6)

puss from one to the other by o sequence of elementu-m(ié‘xmsforma-
2, N

Sometimes it is of importanee tg},\khow whether the trans- -
formations envisaged in Definition 5ie within a given ficld F. .

DrriNITION 6. T0 matﬂcgs.’i@é‘é‘ equivalent in a given field F
if 1t s possible to pass fromione to the other by a sequence of
elementary tmnsfo?matio%e lying within that field.

e

Our previous work, fustifies such a definition. For if we can

go from 4 to B Hy\e\lémenta,ry transformations in F that use
numbers k&, &,,.4 for transformations of Type II and multiples
by, Ry, ..., for drdnsformations of Type IIT, then we can go from
Btod b“ngl‘ementa;ry transformations that invelve the num-
bers 1l k... in Type TT and multiples —A,, —4,,... in Type

IIr; @reover, 1/k and —% belong to F provided that  and A
belong to F.

\'\; Further, when 4 and B are equivalent in F
singular matricest U and V, wi
satisfy UAV < B,

there are non-
th all their elements in F, that
U-1RV-1 — 4. {(7)
1.7. Bouivalent matrices have the same rank

Since U and ¥ in (6) are nen-singular matrices, the ranks of
4 and B are equal.f
T Write U, V as
I Chap. 1, § 10.

i
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As we ghall see in § 2, the converse theorem is true; two square
maitrices each of order » and rank r are equivalent.

1.8. Bquivalence is transitive
From the definition of the term ‘equivalence’, if 4 is equi-
valent to B and B is equivalent to €, then 4 is equivalent to C.

2. Properties of equivalent matrices

[Throughout this section, unless the contrary is oxpressly stated, \\
the letters A, B denote square matrices of order n: and all numbgrs
belong to a given field F.] o\ 7

2.1. TarorEM 1. Let the elements of 4 belong io t{ ﬁ.;ld F
and let the rank of A be r < n. Then A is eguiwle@;bz F to the

Hatri ' , $
J = [:[x_L,Q] ‘
— i 3 ) M
010 w‘\\w

where the submatrix I, is the wnit mat?'i;x:,\vﬁ order r and the zeros
denote null submatrices. \ M

Proor. By hypothesis, 4 coyﬁé;{ﬁs a minor of order r whose
determinant is not equal to zé:ﬁo: Hence sppropriate changes

of rotvs and columns (if suCh be necessary) make 4 equivalent
to : .
> \:‘Il — [y——: Eil,
QiR
where M has #bws and columns and |M| = 0. The (r-+p)th
row of 4 ja:lhﬁaaﬂy dependent in F on the firgt r rows, and so
the (r--p)ih row can be made a row of zeros by subtracting

suitablé,\multiples of the first # rows. Thus.A4, is equivalent in
E46 )

where the zeros denote null submatrices having n—r rows.
On working in & similar way with eolumns, 4, is -equivalent

in Fto 1
N A, = [.JY{_E_,Q], |

which is therefore equivalent in F to 4.

A
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Suppose M is, in full,

ay b, . . K
ay by . . k
a. b, . . k

At least one number in the first row is not zero, since | M| # 0,
and by a preliminary change of columns in 4, if such be
necessary, we may suppose «; ¥ 0. By subtracting sujta%‘le
multiples of the first column of 4, from the sccond, ied,...,
rth columns, we obtain 2 matrix 4,, equivalent to ,:ffaﬁ having

~os
T

Iy 0 . . 0 ’:t\\ ’
&

a; B . . x| x\

&y Br . ’o‘%‘ y -

in its top left-hand corner and havjﬁg\'zeros elsewhere.
On working by rows, 4, is equivalent to 4;, a matrix having
in the top left-hand corner 0%

~
oW

a N
‘Q\\ Be + - xy

. 0 B . . x
moreover onelds least of B,,..., «, is not zero (or the rank of 4
would be Jess"than 7).

We\a@;iﬁroceed step by step until we reach an 4,, equivalent
in FAOA, havin .
’w‘fQ g dlarg{fxl, Hoyenny &r}

N\ .
C J}nfthe top left-hand corner and having zeros everywhere else.
/A final set of elementary transformations, mulfiplying the

rows by at, a5 L., o5 %, shows that 4 is equivalent in F to J.
CoroLLawY. When 4 is of rank n, it is equivalent in F to I,.

2.2. Turorey 2. A and B are square matrices of order n with

elements in F; each is of rank r. Then A and B are equivalent
in F.

*
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Proor. When r < n, both 4 and-B are equivalent in F o
the matrix J of § 2.1. When r = n, both 4 and B are equivalent
in F to I,. Hence, by §1.8, 4 and B are equivalent in F.

2.3. TarorEM 3. The matriz A s equivalent i F to any
matre _ RAS,

where R, S aie non-singular matrices of order n with elements

in F. C ~
We have only to observe that EAS has the same rank as 4\

and Theorem 3 follows at once from Theorem 2. ()

7N
P

2.4. Note on Theorems 1-3 A

The very generality of the results shows that vsiejﬁhail gain
~ but little knowledge of any particular matrix by-gtudying the
set of equivalent matrices. The crux of the matpe¥ is that rank
is preserved, that and nothing else save thg,r;tﬁ‘niber of rows and

columns. OO
2.5. Bilinear forms A\
Let Az, y) E.,ﬂ‘%&'fb‘; Yp

a bilinear form in the 2n varidbles

xl’ ) x2’ ""..&x’m yl’ yz’ “"' y?’b’
be transformed by thelgubstitutions

’ii:x:RX, y:SY,

in which =, %,X ;Y denote single-column matrices with elements
&5 Uy Xg, Fpo0d R, S are non-singular square matrices.

The ]{ﬂ%fié'ar form ist #" Ay and transforms into X'RY, where
B =44, The matrices 4 and B are equivalent (Theorem 3}
aml}he bilinear forms are also said to be equivalent.

But again the generality is too great: it is not often that one
is interested in transforming a bilinear form by means of a
substitution R acting on the z and & completely unrelated
substitution S acting on the y. The problem gains in interest
and importance when the B and 8§ are related, e.g. when they
are transposes or Teciprocals.

t . 126; ' = X'E’ and so&'dy = X'RASY = X'BY.
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3. Rectangular matrices

When A has n, rows and =, columns,
X hag n, rows and n, columns,
and Y has n, rows and n, columns,

the product X4 has n, rows and n, columns, and XAY hasn,
rows and 7, columns.

Any elementary transformation of 4 that affects its rows is
obtained by forming a product X4, where X is a square matgiz
of order #, and is of one of the three types considered ip§ 1.:3.
Similarly, an elementary transformation of a matrix\b that
has », rows and n, columns is obtained by formiugau-“i)r(xluct
BY, where ¥ is a square matrix of order n, and i$:0f 6ne of the
three types considered in § 1.3. o\

As in § 1.5, a matrix B derived from &by a scquence of
elementary transformations can be expr?&éd as

X, .. X, AVY,
or ) U.AJZ., ‘:..

where U and 7 are noh-smgplaff'équare matrices, U is of order
7y and V is of order n,. Algo, ‘A = U-1BV-1, Thus Theorems

1 and 2 apply without ghange to a rectangular matrix 4, while
* Theorem 3 becomes, O :

‘Let R, 8 be‘ fgtén\-singular square matrices of orders ny, %y

respectively, lep-Ahave ny rows and n, columns, and let the elements

of all three matrices belong to some given field F. Then the product
RAS is'equ\?‘fmlent to AinF,

4. A@Eé on later chapters ,
~Jheorem 3 shows that equivalence may also be defined thus:

\\; “Let A be a square matriz of order n. Let B, S be any twe non-
sz'ngulm matrices of order n. Then the matrix RAS is equivalent
to 4.

The one thing that is preserved under this very general kind
of equivalence is rank and order, and, as an instrument of
investigation into the properties of matrices associated with
particular algebraic forms, this kind of equivalence is too general
to be of much use. In later chapters we investigate the problem
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. of equivalence when B and S are related by some definite law.
Tor examyple, to anticipate a result proved in Chapter 1V, when
S is any non-singular matrix, R == §-1, and two matrices A
and B are equivalent in the sense that
_ B = 8-148,

it, will follow that the matrices 4 and B have the same charac-
teristic equation; in these circumstances, not only rank and
order, but also the eigenvaluesf or characteristic roots are
preserved. : ' A+

Before procceding to these special kinds of equivalenc {we)
consider (Chap. 11T} the general kind of equivalence for gn@‘. ces
whose elements are functions of a variable A. ::\'\”3

&

W
1 The names *latent roots’, ‘characteristic roots’, ‘cigenﬁa,]qm?\are in general
uso for what we called (Chap. I, p. 12) the latent roota. ,\\" :
:’\\;
”\\ W
NV
\J

’5

™ ’

Al e -
N



CHAPTER 111
EQUIVALENT AMATRICES

1. Definitions

In this chapter we shall be concerned with matricos whose
elements are polynomials in a variable ) with cocflicionts jn
a given field F. To avoid constant repetition in our explana-
tions, we state at the outset that, throughout this chapter, 4ty
COEFFICIENTS OF POLYNOMIALS, ALL NUmBERS', ANDOALL
‘CONSTANT MULTIPLES® REFERRED TO IN TIE TEXT BE{ONG TO
A GIVEN FIELD F, N

Dzrmvizion 7. A matriz 4 — (@] in whiche$oe or all of

the: elements a,, are polynomials in a variadf¥Q s called o M

matriz. A

The concept is a generalization from theparticular matrix
\ &
A—-AC = [aik—(‘%k‘],
in which each eloment, is g linear funﬁ;pidn of A.

The determinant [4] of a,‘/\’;fn’zit-rix Is, in general, a poly-

R

norgial in A; it may be a cougtant independent of A, In parti-
cular this constant ma {be zero, and then [4} = 0 for all
values of X: we usually igigicate this by saying ‘|4 is identically
zero’, N\

Dermverron 8,\Phe A-matriz 4 s said to be singular when
[} is identicatly

ey zere amd to be non-singular when 4] is not
ident-icallg,{ zez%

DEE;DQEEE)N 9. The A-matriz A is said 1o be of rank r (= 1)
wke?g,j?;w the largest integer Jor which we can state that “not all
midrs of order r are identically zero’,

2. Elementary }.-transformations

2.1. The elementary A-transformations of a matrix, usually
though not necessarily a, A-matrix, are

(i) the interchange of two

by a constant other than zero;
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(iii) the addition to the elements in one row (or column) of
the elements in another row {or column) multiplied by
a polynomial in A or by a constant.

The only difference between A-transformations and those in
Chapter 11 is that we now admit in (i} as a ‘multiple’ not only
constants in F but also polynomials in A with coefficients in F.
In (ii) the multiplier is still a constant, independent of A.

~

2.2. Transformation as matriz multiplication N\
As in Chapter I, § 1.3-1.5, an clementary A-transformation,
of a matrix 4 may be expressed as a matrix product, a preducﬁ
XA when the transformation affects rows and a prodm;t AX
when it affecis columns: further, the determinant | X, f\ 4 non-
zero constant. In particular (we quote from Chagy I, §1.4),
(i) when X is of Type I, it is its own reciproeal é;nd X =1
(i) when X is of Type If and [X| = k,.i{%‘ reciprocal is also
of Type Il and |X-t = k% O
{111) when X is of Type IIL, say X X I H,;, where Hy has
a polynomial in X or & non«zero ‘constant at the cross of
the ith row and jth column ‘and has zeros elsewhere, its
reciprocal is J— Hw Whlch is also of Type III, and
(X|=1. \\
The one point of difference from Chapter II is that an X of
Type III is now, ighgeneral, a A-matrix; bub the value of the
determinant |X |.a {S still unity..

2.3. Sequenésé of elementary A-transformations

Let Xl\ /X, and ¥,,..., ¥, be the matrices of elementary
A transfo}matlons, let

\"\ ) U=X,..X,, V=1.7%,
Let/ UAV = B, (1)
so that B is a matrix derived from A by a sequence of elementary
A-transformations. Then

U} = | Xi] o [ Xl V] = ] [Ty,
and the values of |U| and {V] are (by § 2.2) non-zero constants.
The matrices U and ¥ have reciprocals
. -1 - X..;I...Xl_l, V-—-l . Yq—l'" Yi-l;
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also U-BV-1 = 4. )

Since the reciprocals X~! and ¥~ are the matrices of elementary
A-transformations (§ 2.2, where reciprocals are shown to corre-
spond type for type), (2) shows that 4 can be derived from B
by a sequence of elementary A-transformations,

Hence, if B is derived from 4 by a sequence of elementary
A-transformations, then 4 can be derived from B by a sequence
of A-transformations, : 0

N

2.4, Definition of d-equivalence O\

DEFmNaTron 10. Two matrices are \-equivalent if it id possible
20 pass from one to the other by a sequence of elemegz@?y A-trans-
Jormations, \ 1,

As for ordinary matrices, the relation (INabove, in which
U and V are non-singular, shows that A-eqlivalent matrices
have the same rank (Chap. I, §10). O

2.5. Before proceeding, we note qﬁ& two points of detail.

{#) We have seen, in § 2.3, thaba’agﬁén A and B are A-equiva-
lent, there are matrices U7 and #\for which

, UAV = B (1)
and the determinants || and |V are non-zero constants. At
a later stage we shall ptove the converse, namely, if B is defined .
by (1) and the determinants | U | and |V | are non-zero constants,
then 4 and B aréXequivalent.

(&) If 4 is:{i%guiwlent to B and B is -equivalent to O, then
A is A-equivilent to €, This proposition is inherent in the defini-
tion of Aetuivalence. Obvious as it is, the proposition is worth
n‘oti;;g’}xplicitly, since in the sequel we shall encounter long

_shéihs of A-equivalent matrices and it will be important to

“realize that the last member of the chain is a A-equivalent of
the first.

3. A fundamental lemma

- 3.1. Preliminary. The first main objective of this‘chapter is
to show that a A-matrix of rank » ig A-equivalent to a matrix

£
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wherein the (F’s denote null submatrices and ¥ is a diagonal
- mafrix, of order 7, whose elements along the diagonal are either
non-zero constants or polynomials in A. We shall build up our
proof of this from the lemma of § 3.2.

We first need a word or two of elarification about factors.
Let f(A), f1(2) be two polynomials in A with coecfficients in F;
in particular cases either f or f,, or both, may be constants in F,

but f may not be identically zero. (&
When f=0, f=0f A
‘When f; is not identically zero, :"‘T "/

KEITHER there is a unique polynomial ¢(A), with coeﬁiclents in F,
for which fi=dqf, O (3)

OR ~ there is a unique pair of polynomials ¢{A} dnd #(A), with
their coefficients in F, for which} o\
fl_gf—'_r \‘: v
-and the degree of 7 is less than(the ‘degree of f.

Nore. ¢ and r may be constants, but as we have set out the
various possibilities, r cannot be 1dent1ca,ﬂy zero, though ¢ may be.

When (3) holds, we say thatf‘is a factor of f;. Tt is perhaps
worth stressing that the abOwe requires the coefficionts of all
polynomials concerned #6ybelong to a field F and does not
require them to be m‘oég%rs For example, to take two extreme -
cases,

AV m+§ L2x41)
8O th&t b Ew—l— 1is a factor of @+1;
(&) Le y\7é 0 be a constant in F and let
S =agta, i1t da, :
be\aﬁy polynorma.l (other than simply 0--04-...-+0) with coeffi-
cients in F. Then f/k is also a polynomial with coefﬁclents in
F. But f= kxR
“and so, under the present dofinition of ‘factor’, & is always a
factor of f. S
The point is important in the proof of Theorem 4 (p. 33).

"+ Wo can find ¢ axid » from the fact that g i the quotient and # the remainder
when f divides f,.
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3.2, Statement and proof of the lemma

We first dispose of some details of notation, devised to clarify
and shorten the work.

{z) By the FIRST ELEMENT OF A MATRIX we shall mean the
element in the first row and first column.

(b) We shall use the symbol 7, ¢ to denote ‘“Tirg erEMENT N
THE rth ROW AND sth coLumy; e.g. we write “z is 7, §* or ‘let
r, 8 be f. A\

(¢) By a NON-ZERO ELEMENT we shall mean one that 18 not
identically zero; we are not here concerned with thdfact that
an element may be zero for some particular va{\ugi{f A

Lemua. Let A be a A-matriz with a non-zer%'éi*st element f(A),
Then \%

BITHER f(A} i3 @ factor of all other nonpsxero elements of A,

. O% there s o A-equivalent mqgnx "B with a non-zero first
element of lower degree that f()).

Proor. Let 4 have at least~@tie non-zero element of which

[ is not a factor, ON”

{I) Suppose that the firstrow of A contains such an element,
N . .
say : '.\“:fl(A) is 1,4,
where f is not a fastor of fi. We may write

,\” flEQf_i_r)
where 7 iy on-zero and is of lower degree than f.
When"‘g*:— 0, the interchange of columns 1 and j gives a
A-equivalent matrix having r as its firs element.
"\.When ¢ 18 non-zero, add to the jth column —g times the
m@l‘sﬁi in the A-equivalent matrix so formed

rois 1,5
and an interchange of columns

! gives a A-equivalent matrix
with 7 ag its first element,

Hence, if the first row or (by o similgr argument) the first column
of A contains a non-zero efement of which f is mot a factor, A is
A-equivalent to @ matriz B whose first element s non-zero and is
of lower degree than I
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(IT} Now suppose f is a factor of every non-zero element in
the first row or first column, but that 4 has & non-zero element
¢ of which f is not & factor. Suppose that

¢ s ik (@£ kAL
We consider separately the circumstances
(@) L,k is non-zero, ® Lk is 0.

{¢) Let 1, k be non-zero. By hypothesis, it has f as a, factor"\§
let it be gf. Add —g¢ times the first column to the 4th; in the

A- -equivalent matrix so formed, say C, O
1,1 is f Lk is 05 N
5 . 18 Y, \\
i, 1 is g, f (say);- i,k i fp\"
whero fo=¢—ag; [. ’

In this, f, is non-zero and f is not a factor of}‘ [_q1 may be zero,
a constant in F, or a polynomial in A]. 2\ )

Now form from € a A-equivalent; \matrix by adding to the
elements of the first column the»elements of the kth column.
In this matrix, D say, N

$
“

L1 is f; \\\ 6,1 is q; f+f2
and f is not a fact-orgo'{\tﬁe non-zero element in 4, 1. By (1),
D is A-equivalent to,a matrix B whose first element is non-

zero and of lowe{' dégree than f. Moreover, 4 is d-equivalent
to U, to D, ans{dso B.

- {b) Let\]\ B be zero, Thenin A
\ L1 is f 1,k is 0
A0 L s g fs ik ois ¢
Wé can proceed at once to the second step (from € to D) of
the argument in (@}, using ¢ instead of f,. Again 4 is A-equiva-
lent to a matrix B of the type required.

We have thus proved that when A contains a non-zero
element of which fis not a factor, it s A-equivalent to a matrix
with a non-zero first element of lower degree than f. This
establishes the lemma.
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4. The normal form of a A-matrix
We are now in a position to prove a key theorem.

Turorem 4. Let A be o A-mairiz of order n and rank r > 1,
When v < n, A is A-equivalent 1o a matriz of the form

_JE O
v=|5 of
w?_a_ere the O's denote null sub-matrices and o &

N
E = djag{El,Ea,...,Er}, ':‘ 3
each E, being either unity or a polynomial in X willy unity as
coefficient of the highest power of X. Moreovert \»
E, is a factor of By, F, a factor of F,..., Er.\'i :(}factor of E,.
When r = n, A is h-equivalent to E abouey
Proor. First step. This finds a, .)}%ﬁuivalenﬁ matrix 4;,
whose first element is non-zero. s\
The matrix 4 has at least one Hoh-zero element (since r 2 1).

Accordingly, N
EITHER the first elemenj;:{ol{' 4 is non-zero, when we take
~ A, =4,
NS .
OR the first 'ege}nent 18 zero, but some other element x is

non-zeres We then take 4, to be the matrix obtained

fromd A by the interchange of rows or of columns,

possibly both, necessary to make x the first element.
Let thefitst element of 4, be f,(A).

Sekand step. This finds a A-equivalent matrix B whose first
qki;;}ent is a factor of all non-zero elements of B.
O TSy s a factor of all non-zero elements of 4,, we define B
N/ tobe A;. If f, is not a factor of all non-zero elements of 4j,
then (by the lemma of § 3.2) 4, is A-equivalent to a matrix 4,
with a non-zero first elément J2(A) of lower degree than f,(A}.
If £, is a factor of all non-zero elements of 4,, we define B
50 be A,; if not, A, is A-equivalent to an A, with a non-zero
first elemept J5(2) of lower degree than Jo(A); and so on.

t See_ the note in § 5.4 (p. 38) on the fact that each E; is a factor of the
succeeding By .
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‘ Proceeding thus, we can define B provided that the sequence
of matrices © 4, Ay

with non-zero first elements

f 12 f 2r
reaches a point at which f; is a factor of all non-zero elements
of 4,, when the sequence ends. -

Now the degrees of fi, f,.... docrease at each step. Hence, if O
the sequence A, A,,... does not end while fis still a polynomzal
we shall arrive after a finite number of steps at an f, th:&’b is/
merely a constant and this constant f; will be a factor of e’trery
non-zero element of A, [cf. (b) of §3.1]. Hence tha\éequence
Ay, A,,... ends, after a finite number of steps, wmh‘ some 4,
whose first element is non-zero and is a factop of'2ll non-zero
elements of A,,. We take B to be 4,,. Acc@&ngly,

A is A- eguwalent to ¢ matriz B whose{imt element s non-zero
and is a factor of all non-zero elements Q}\B

Nors, This first element may be, an'& ‘often is, & constant.

Third step. This finds a A- eqmvalent matrix { given by

P , (4)
2 ol
in which mxs} non-zero element, all other elements in the first
row or fifsh column are zero, and g 18 a facior of every non-zero
elemen’tm the submatriz P.

”Lei; the first row of the matrix B above be

/ B @B BB - B
in which some of the ¢’s may be identically zero. By taking in

SUCCEREIoN col. 2—gyfcol. 1),
col, 3—¢,feol. 1),
and g0 on, we obtain a A-eguivalent matrix B; whose first row is

p 00 .. O

5376 o
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also 8 is still a factor of every non-zero element of this matrix
B,. '
By working on the rows of B, we obtain a A-equivalent matrix °

C of the form (4). Moreover, C is of rank r (being A-equivalent

~ to 4) and B is non-zero; hence P is of rank r— ]

Fourth step. This applies to the 2nd, 3rd,..., nth rows and
columns the manipulations which the first three steps have
applied to the 1st row and column., N

(i) By a first step, involving interchange among{th$ 2nd,
3rd,..., nth rows or columns (or both) of €, but leaving the first
row and column of €' unchanged, we replace }jl{ya sub-matrix
B, whose first element is non-zero; L&

(i) By a second step, involving inter¢hanges as in (i) and
adding to rows (or columns) of ¢ my biples of other rows (or
columns), but always excluding the first row and column of ¢
from any part in such manipu]a,tji{\)‘ng, wo replace I, by a sub-
matrix @ whose first element ig nén-zero and is a factor of all
non-zero elements of Q: » B

(i) By further addingwdio Tows (or columns) of ¢' multiples -
of other rows (or columps), again excluding the first row and
coluran of ¢ from such manipulations, we replace @ by a sub-

matrix R of the fyps”
SOTr 0 0 . . g
XS \g 0 Yaz Ym . . Yan
N - el e ’
,\\“Q O ‘yn3 7’3‘&4 * + Ynn

mw‘luch ¥ 18 non-zero and is a factor of €Very non-zero y.
L ()8ince B, in (4), was a factor of every non-zero element of P
\and y is obtained as a sum of multiples of elements of P, g is
a factor of y. Hence (' ig A-equivalent to a matrix D given by .’

g8 0 o . . 0

0 » 0 0
D=10 o Va3 Van |

¢ 0 Yog .+ . VYan

in which 8 and y are non-zero, 8 is a factor of y, and y is a factor
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of every non-zero v;; moreover, the sub-matrix [y;] is of rank
r—2 {for D} is of rank ). :

After » repetitions of this process we arrive at a matrix K,
which is A-equivalent to 4 and is given by

80 . . 0
0y . -0
k=\. . . . . 0O}
0O 0 . ., &k : W
0o X O

in which the 7 elements f, y,.., « are non-zero and each.J fs o
factor of its successor. But since K is A-equivalent fo, 47 its
rank is r; and so the sub-matrix X must be a null m\‘aj;mr

Fifih step. Let b; ¢,..., k be the coefﬁments of\the highest
powersof Ain §, vy, & respectwely [if B,... say) 3re constants,
let b = 8,..., d = 8]. Multiply the first row\\of K by 1/b, the
second by 1 /c and so on. The matrix ¥4b, formed is A-equiva-
lent to K, and so also to 4. This cstabhshes the theorem, for

(i) each of the r elements 8/b,.... k{k in the diagonal of N is
either unity or a polynomial in A thaving unity as coeﬂﬁclent of

‘.

its highest power of A; N
(ii) in the sequence \\

'.&Bg'x ’y/ﬂ, wery K/k

each term is a factor of its successor.

Dermreron (N The form of matriz given in Theorem 4 is
called the EQtﬁVALENT NORMAL FORM (somefimes stmply “the
normal fob«tj’ of the A-matriz A.

5. Tlge H C.F. of minors of order ¢

\ ~5 1. Preliminary. In this section we shall prove that the By, &,...
¥, of Theorem 4 can be determined from a knowledge of the H.C. F
of minors of orders 1, 2,..., # respectively of the original matrix 4.
We first give a word of explanation about the II.C.F., i.e. the highest
common factor, of a number of polynomials with coeffielents in &
given fecld F.

Let £1{A) Fo(A}yeees FinfA) be a number of polynomials with coefficients
in F. Then f, and f; bave an H.CLF. g, say, which is sither unity or
is & polynomial in A with unity as the coefficient of its highest power
of . Moreover, this H.C.F. may be determined by operations within
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the fleld F and without Jactorizing Jrand [t Also &y and f, have an |
H.CF, g, say: and so on until we arrive at ¢ w-1» Which is the H.CT,
of the m polynumialsfl,f,,...,fm. . ]

This H.C.F, is either unity or is a Polynomiul in X with unity as -
the coefficient of its highest powor of ),

5.2, H.O.F. of t-rowed minors
THEOREM 5. When A4 and B are X-eqpiivalent matrices, the
H.C.F. of the t-rowed minors of A is equal to the H.C’..F:{f the .
t-rowed minors of B, O\
We shall give two proofs of this important thcorr,am:. - _
FirsT PROOF. Since B is A-equivalent to A, thefe are non- ;
singular A-matrices U, ¥ for which 7 ‘
: B=UAV. )
Let B, U, A4, V; denote typical t-rowed wtnors of B, 77, 4, 7.
Then (Chap. T, § 10) every. non-zero ¢-tawed minor of AV is
e -
of the form S A%
the sum possibly reducing to a¥iigle term: that is,
B <30 4,7, N
Hence, for given ¢, evei"y‘"& contains as a factor the H.C.F. .’
of the 4, Q .
But also 4 ig A;'.K(ﬁﬁvalent t0 B and therefore every 4, con-
tains as a factor the H.C.F. of the B, It follows from these °
two results taken together that the I.(.F. of the 4, is equal

to the H‘O\:}E}\df the B,.

SEC%"D;‘PROOF. This considers the actual change in the values

v

N/

-~ of mifters that is effected by & single elementary A-transformas o
tiofs
~(Let Bhe derived from 4 by an elementary A-transformation.

Met G be the H.C.F. of the t-rowed minors of 4, and G;(\)
- the H.C.F. of the t-rowed minors of B. Tf the elementary trans-
. formation is an interchange of rows (or columns) or is the multi- -
plication of, g row (or column) by a constant, the values of all
- minors are either unaltered or multiplied by & non-zero constant.
- This leaves the H.C.F. unaltered,

T This point is covered by many

1 algebra toxt-hooks ; e.g. W, L, Forrar,
Higher Algebreg {Oxford, 1948), b. 222 8
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Let B be derived from 4 by an elementary A- Lransformatlon
of Type ILI; say, col. p+h{A) X eol. g replaces col. p. The only -
minors whose values are altered are those that contain elements
from col. p and do not contain the corresponding elements from
col. g. The value of any such minor, 4, say, is altered to
A, RM, where M, is also a t-rowed minor of 4. Each 4, and
M, containg G{A) as a factor: hence

G, contains G(\) as @ factor. -
But A.can also be derived from B by an elementary A-tpdns;
formation: and, therefore, ' O
G\ contains G () as « factor. ) \\ N

It follows that & =, and that any sequence, o{elementary
Atransformations leaves the H.C.F. of the tpowed minors of
s matrix unaltered. ' \' v

5.3. Application of Theorem 4 to tk&md form
TrEorREM 6. Let ¢ matriz A4, of mnk r, have @ normal A-
equivalent form E’ O]

where the O0’s denofe n-ul.l.s@bmat-mces andt

@ = diaglE,, By, B},
Then the H.C.F. X
of the Slements of 4 is F,
of the 2-rowed minors of A 1s B By,
\df Ve 3-rowed minors of A is EIE E;,
\
~\’i" of the 7- mwed MINOTSs of A 1s E Ez F
PROOF By Theorom 5, the H.C.TF. of the elements of 4 is
equal to the H.C.F. of the elements
B, B, .. E.
But (Theorem 4) each of the £’s is a factor of its successor and
therefore the FI.C.F. of the E’s is .
- Let 1 < £ < r. The H.C.F. of the i-rowed minors of N is the
H.C.F. of the polynomials obtained by forming the product of
t When # = #, the {'s are absent and N = E.
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any ¢ of the B’s, Since each F is a factor of itg successor, thi
HCY.is B, E,..E, By Theorem 5, the H.C.F. of the ¢-roweg
minors of 4 is also E\E,..E,

5.4. Note on the Jactors B\, B, ..., B,

The fact that B, is a factor of &, 1, which we noted in Theorem
4, is important and is often used in later sections. As Thegrem 8
shows, this fact embodies a property of determinants, namely,
that the H.C.F.’s of minors of one, two, three,.., 1'0)i-'§~\and
columns are necessarily of the pattern &)

E, EE, B LKL, ca o

where each £, is a factor of the succeeding EN\“ It may be
belpful to establish this in an elementary wags

In the fivst place, when every element a;-; of a determinant
4 contains & as a factor, every 2-rowedwiinor of 4, such as
e Oy ‘
;s ay .
is either zero or contains B} agafactor. The H.C.F. of 2-rowed
minors is therefore E\E,, Whgré E, contains K, as a factor.

Next, with a determinant of order three, say

o

"\
= az‘g\&y:“ait B

N/

\\ 2 b o
WA= g, by ¢, |
) a3 by ¢

let the H.CHCF the elements bo Ey and the H.C.F. of the co-
factors AN G, be £ E;. Then, by Jacobi’s theorem,

o \\\’ oA = By By G, (5)
which'contains (&1 By)? as a factor, Wa =8, c,— v3 &1,
\.\geﬁults like (5) show that each term

gl aA, ey Vg .
contains &, % as a factor, Moreover, the H.C.F. of Oiyy Qlgyeeey ¥
is unity (since the H.CF. of %1 @ps0ees €318 By, and so A containg
the factor ¥, . Hence, when the H.C.F. of the elements of
& determinant (of order m 22 38) is B, and of 2-rowed minors
is B, B,, the H.C.F. of 3-rowed minors containg & factor E, H}
and is of the form #, B, By, where £, is a factor of &,
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'Finally, let 4 be a determinant of order n, say 4 = [ayl,
and let 4, be the cofactor of a;. Then, by an extension of
Jacobi’s theorem,

Ay Ay
AJ'S AJ’G
Accordingly, if we suppose that the H.C.F. of (r—2)-rowed
minors is E, By ... E, , and of (n—1}-rowed minors is .
E,E,..E,,, LN
(8) gives O
' (By By oo By = A B By o By gdpiey (OY
where the H.C.F. of the various g, is unity. Hence “gontains
the factor E, ... K, , B2_;. Accordingly, if for a-ng@léterininant
of order m 3= n, the H.C.F. of (n—2)-rowed mihets'is &y ... B, 5
and of (n—1)-rowed minors is ¥, ... B, _;, the H:C.F. of n-rowed
minors has a factor E,..B, , B2, and(fo is of the form -
E,E,...E,, where E, contains E, , as 4 factor.

It follows, by induction, that Qhein.C.F.’s of the non-zero

minors of a determinant follow Qhe:f)at-tem

By EESNEBE, ..

= A.(minor of 4 having n—2 rows).  (6)

where each £, is a f&ctqr&bf the succeeding E,,;

6. The invariant’f'aét\ﬂrs B, B,..., E,

THEOREM 7. 'W.'hen A is hequivalent to B, the two matrices,
have the sdm;e::fu}?‘mal A-equivalent form N, the same rank r and,
fort= 1,:2;..\., r, the same H.C . F. of t-rowed minors.

Gon?,@xsgiy, when A and B have the same rank r and, for t = 1,
2,...,{}:‘," the same H.C.F. of t-rowed minors, the two matrices are
Xequivalent and have the same normal A-equivalent form N.

Y Paroor. Let A be A-equivalent to B. Then, if 4 is A-equivalent

_to N, B is also M-equivalent to N. The two matrices there-
fore have the same rank and, when 1 << ¢ < r, the H.C.F. of
trowed minors of either is B, B, ... B,. This proves the first part
of the theorer.

Tet 4 and B have the same rank and, for £ == 1, 2,..., 7, the

t F. 57; Theorem 18. -
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same H.C.F. of t-rowed minors, say Dy, D,..., i) respectively,

Define K, E,,..., E, by :
E =D, E = DD, .. B = DiD_,.

Then (by Theorem 6) both 4 and B have the same norma]
A-equivalent form N given by

N: [g_i(_)}, o &N

0.0 N

where ¥ = diag(Z,, By E). Further, they arc thcnmX-:eqmva- '

lent to each other. This proves the second part, of tpﬁ.iheorem. |

In view of the fact that the B’s are unaltered by{atly sequence
of elementary A-transformations and are fact@{{:s.of the various
H.C.F.’s of minors, the polynomials \/ '

El’ Eg, nawy ‘,’P"\\';

are commonly called the INVARIANIFACTORS of any matrix -

v

from which they derive, QO
When 4 is a square A-matri;;jt}’f order n'and is non-singular,
7 == n. There is then only onelminor of order %, the doterminant .
|4 itself and the H.C.F. ofh-rowed minors is |4]; thus, apart
from & possible const-a.{t'\factor, |4} is the product of B,, &,,..., -
7. Alternativg;@eﬁnition of A-equivalence .
Let R, § be@ny two A-matrices whose determinants | B], | S/
are non-ge?é“constants, independent of A. Lot 4 be a given
A ma:t\p\%,and let B be given by

B = RAS. (7) -

" ;“i,‘hén, on solving (7), )
O 4 = R1pg1 (8.
. where B~ and -1 are also A-matrices, since | B[ and || are
constants (cf. the definition of g reciprocal matrix, Chap. T,
§4; the elements of B ape Polynomials in the elements of R
divided by |R|).+
Since R, § are non-singular, the matrices 4 and B have the

1: If |B is & polynomial in A and is not a eonstant, the elements of B~1 are
rational functions of A with denominstors IBR|: they are not polynomials in A.
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same rank, r say. By a fepotition of the argument used in

the first proof of Theorem 5, 4 and B have the same H.C.K. -

of #rowed minors for 1 <{ ¢ <{ #. Hence, by Theorem 7, the
. matrices 4 and B are A-equivalent.
Conversely, a fact we have had oceasion to remark several

times already, if A4 and B are A-equivalent, there are matrices

R and § for which |E| and |8 | are constanis and the equations
(7) and (8) are gatisfied.

The theory of equivalent matrices can, in fact, be starteé[,;:

from this end, A-equivalence being defined thus: O

Two A-matrices A and B are said to be X-equivalent if oré are .

A-mairices B and S, whose determmants [ B| and iS [ a,re\equal to
non-zero constants, for whick
B = RAS, A= R1BSH
" In this definition all constants and all coc}ﬁc}ents of poly-
nomials in A are understocd to belong t{o\%\ given field F; as we
have seen in earlier sections, there are ¢értain points at which
the argument breaks down if t]:us promo ig dropped.

v

"

8. Elementary divisors
8.1. Let 4 be a given A-m\atrlx of rank a,nd let its A-equiva-
lent, normal form ¥ be g\\w’n by
N W [F : O]
< 0.0
where E — djag{EI, E,,...., B}, each of E,,..., B, is a factor of
its successor{and each of the diagonal elements of & is either
unity or a\}aolynomlal in A having umﬁy as the coofficient of
its hlgl:(esﬁ power of A.
8ye have had oceasion to remark earlier (§ 5.1, p. 35), the
E, céin be determined by rational processes within the field F
by continued application of the algorithm for finding the H.C.F.,
of two polynomials; for example, if F is the field of real rational

numbers, an invariant factor B, = X*--2 appears as such and

not as the product (A4-iv2)(A—iv2). On the other hand, it is
often convenient to express each E, as a product of linear factorst

T We must suppose that the field F 1s one in which a polynomial can be
expressed as a product of linear factors.
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and powers of linear factors, say
By= (A—a)"(A—B) A—y)....

When this is done and we have written

E, as the product of (A—a)¥A—B)P ... (A—k s,

o, .., (A} (A—B) .. (A— ks,

E, as the produet of (;\—-rx)“'()t-——ﬁ)b"... (A—s)br, \<
such of the factors as are not unity are called the };L?'aiﬂmmm
DIVISORS of the matrix 4.

Since each of E,,..., E._, is & factor of its xSJé{EéESSOI‘,
O K Oy K o K By \
by < by < .o < b

7

and so on. 4

When we know the 1NvarmaNT BACTORS E,, E,,..., E, we can,
assuming the possibility of so[vmg the appropriate equations
in A, determine all the elementary divisors. Equally, given all
the elementary divisors, thé’,appmpria,te multiplications deter-
mine all the invariant.faéﬁ)rs.

We shall return t0\the subject of elementary divisors and
invariant factors Jater. Meanwhile, we state a theorem for A-
equivalence e:;pfessed in terms of these factors and divisors.

82. 4 :?w’}ce’s:éary and sufficient condition for A-equivalence |
- THEORBAN 8. (i) Let A, B be square A-matrices of order n. Then
o n@beé.s&ry and sufficient condition that A and B be A-equivalent
18, that the two matrices have the same invariant factors. '
O (i) Bgually, a necessary and sufficient condition that A and

\ ) B be Xequivalent is that the two matrices have the same set of
elementary divisors.

Proor. (i) When the Invariant factors of 3 matrix are
B, B,.., B, its rank is » and the matrix is A-equivalent to
the matrix ¥ of Theorem 6. Hence, when two matrices have
the same invariant factors, they are both X-equivalent to the
same form N and so are A-equivalent to each other. '

Again, if 4 and B are A-equivalent and 4 is A-equivalent to -
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a normal form N, then also B is A-equivalent to N and there-
fore has the same invariant factors as 4.

(ii) This follows at once from (i) in view of the way in which
the invariant factors £, E,,..., B, are expressed (§ 8.1) in terms
of the elementary divisors.

9. Matrices that are linear in A
In this section all matrices are assumed to be square matrices A
of order #. ) ’\
9.1. Preliminary 9
Let 4 be a A-matrix, each element being a. polynomlal (pos~ :
sibly a constant) in A with coefficients in a field F.. @ 18 said
to be of degree k when A* is the highest power of Nhat oceurs
among the elements. Such a matrix may bawritten in the

form = g A¥ by Mt (a}c\\# 0),
in which ay,..., o, are matrices with elerhﬁnts in F and ¢, is not
the null matrix; it is a polynomial in ) 1wﬂ:h matrix coefficients,
Conversely, such a polynormal 11;1 )« can be expressed as a A-
- matrix of degres k.

We recall from Chapter L,.§" 1‘0 that when & is non-singular,
the matrix products }33, ba

{ \v/

- have the same rank.as'e &g In particular, when b is non-singular
and « is not the pullmatrix, the rank of the products ab and
ba is necossarily" Yositive and, accordingly, neither ab nor ba
can then be ths\null matrix. Hence

Liznmnra, b When
N " B= )J—I—b;_ NlL 6,
% {b,} 7# 0, the products AB and BA are A-matrices of degree

The next lemma is an analogue, for polynomials with matrix
coefficients, of a well-known result for polynomials with coeffi-
cients in a field F (compare Chap, ITI, § 3.1).

Lemma 2. When b, is- non-singular, there s a unigue pasr
of matrices Q, and R, for which

A= B+R
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 and either B, = 0o0r R, is & A-malriz of degree less than 1 (;pos;_

sibly a constant); and there is a unique pair of matrices Q, and
R, for which A = BQ,+R,

and etther By = 0 or R, is a \-matrix of degree less than 1 { possibly
@ constant), |

The reader will see the need for the condition ‘¥ is~not
singular’ if, when % > I, he makes the first step in the division

sum by Ny Moo (b IR~ O

all the terms in the quotient involve the reciprc@r’kof b;.
o\

EN)

9.2. The equivalence of a;—Ab, and aﬁ—.}lbéf\ ;
We set out to prove the following theorem), onc that has many .
applications in the literature of canonig};f matrices. {

TuroREM 9. Let ay, a,, by, b, :b?z‘@;aat-m'ces with elements in F
and let by and b, be non-singulap, Let the matrices
4, = ar"’\,&i}'““ A4, = a,— b,
be )(—eqm'ﬂalent. N\

Then there are nonsSingular matrices p, q with elements in F

or which T,
4 2\ Ay = pd, g

moreover, L\ g, = »a,q, by, = pb, q.

A\ )
PROOF:..\We reserve small letters, e.g. p, ¢, for matrices whose -

elemgﬁ;;%re constants in F: & matrix indicated by a capital
lette\ ill be a A-matrix. :

..{Siﬂce A4, and A, are A-equivalent, there are A-matrices P and °

PN :ijor Whjch

<

) Ay = P4, Q. 1

The determinants |P| and |@] are known to be independent of
A, but the matrices P and @ are, in general, A-matrices. More-
over (cf. § 7, p. 40), Q-1 is also a A-matrix. Let

P=4Rtp, Q1= 84,43,

t W.V.D. Hodge and D, Pedoe, Methods of Algebraic Geometry (Cambridge, -

1947}, p. 93, give the theorem When one only of the two 5’z ia roquired to be .
non-singular,
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where, by Lemma 2 and the fact that 4,, 4, are linear in A,
p and s are constants, possibly zero,
Then, from (1), 4,¢~* = P4, and so

Ay 8 Ayt Ays = 4, P Ay +pd,;.
On rearrangement this gives
A8 —P)A, = pA,—Ays. @,
Now the right-band side is, at most linear in A, while the laft\
hand SiGOTs (@) —B)e=N). ()

Suppose that §;—P, is not the null matrix, but is f‘degree £,
where ¢ == 0, in A. Then, since b, and b, are non-gifg , (8} i8
of degree ¢-+-2 in A and cannot be 1dent10a]ly equait _'pA —4,4,
which is at most linear in A. Hence §; P = 0 and, from (2)

A5 =pA;. (© {4)
. We complete the proof by show mgs‘bhat s is non-singular,
Let -
© Q= Ql 2+9’
Then, since I = QQ-2, v" N

N
s

I= Q;\ﬁlg“l‘Q')(Si 1—3‘3)
T g5, =0 Ay+0)S, 41+ @y g,
or, on using (4),
I—"\ﬁ"s (@4, +9)8, A+ 0, p4,

e \ = (@; 4,8, +25+ 0 )4, (5)
Bince 4 —~)th and b, is non- singular, the rlght hand side
of (5)~1a of degree 1 at least in A unless it is identically zero.
- But “the left-hand side of (5) is a constant and the hypothesis

'ﬁlat the right-hand side is not identically zero is therefore un-

tenable. Accordingly I=gs

or, what is the same thing, s is non- smgula,r and its reciprocal

a1
= q.
It follows from (4) that

Ay =pAyst = pAlq
and in this p, ¢ are independent of A.
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Moreover, for all A, this gives
ay—Ab, = pla,—Aby)g,
whence @y = [a, o, by, = pb,q.

9.3. The equivalence of a,—Ml, a,—I

When, in Theorem 9, b, = b, == I, the unit matrix of order
n, the condition that 4, and b, are non-singular is automa,tica\lly |
satisfied, The resulting theorem is AN\

Turorem 10. Let a, and a, be matrices with elementd) in F-
and let the matrices Y

Ay =a—M, 4y =a,—ALN0)
be A-equivalent. Then there is a non—singui@“mat-rix t, with
elements in F, for which ’ _
A2 = tAlt-lo): ;\\'; ' (6}
and @y = ltaypc ' M

N\
Conversely, if (7) holds, then (6) also holds and the matrices 4,,
A, are A-equivalent. N

*

PROOF. As in the prqgft{i)’i: Theorem 9, there are constant
matrices p, g, for whi(;l{\ )
4, E.pﬂajé ey =payq, I=ply _
~ and the last of\these shows that ¢ = p-1. Hence the first part
of Theorem 19 ¥ollows on putting ¢ = p
Convers\e}f,'when (7} holds,

) ay—Al = ta,—M), )
so".ﬂ;}} (6) follows. Since the determinant [{| is independent
©FR, it follows from (6) that 4, is l-equivalent to 4, (cf. §7,

\”T;p’. 40),
9.4, Application of invariant factors
On combining Theorem 8 and Theorem 10 we obtain a result
of wide application. ' '
TweorEM 11. Let a, and @y be matrices with elements in F.

Then a necessary and sufficient condition for the existence of @
matriaz 1, with elements in F, for which

g == fa; ¢~



EQUIVALENT A-MATRICES ns

18 that the two matrices a,—Al and a,—AI should have the same
invariant factors or, what is the same thing, the same set of
" elementary divisors,

9.5. THEoREM 12. Lef A be a sguare matriz whose elements
are constants. The determinant of the matriz AI—A is equal to
the product of the invariant factors of the matrix.

Proor. Let the invariant factors of A\—4 be
El()t) ES(A): *ry n(}‘)

Then (Theorem 4, with r = n, since the determinant fAI~—A|
iz not identically zero), the matrix A7 —4 is A- eqmvalexg.t to the

.\\'\

matrix B = diag{By(), By, BN}, {
and 8o (§ 7) there are matrices B and S Whose ‘determinants
|R[ and [§| are constants, for which \\,
AM—A = REQ \
Hence [AI 4| = kEl(x\)Ez&) .\, (8)

where % is a constant, and, since he coefficient of the highest
power of A in each E;(A) is uygjsy, k=1

CorOTLARY. Let the lafent roots of A'be o, By, ... Then the
elementary divisors of A\IXA are powers of A—a, A—8, A—y,...

For o, 8, y,... are the Toots of the equation A]—A4} = 0 and
80 ’..1AI—A] = A—a)* (A—B).... 9
By (8) a,boy, Z}ﬁa the fact that the elementary divisors are
factors of the” E;(}),..., B,(A), any elementary divisor must be
of the f\ Y (A—p)® where p is one of &, £, y,....

) 3
)
4



CHAPTER IV

COLLINEATION
1. Introductory

1.1. The field F

The elements of all matrices, all ‘constants’, ‘multiples’, and
‘coefficients’ that occur in this chapter belong to a given field -
F. In the course of the text we refer to this field only “when
we wish to draw special attention to it; lack of refer@ﬁﬁ& to F
when a constant or multiple is mentioned does not*fmpl} that .
the constant or multiple may lie outside F. N '

1.2. Bquivalence restricted by a particular co:n:&;tion ‘
In Chapter II we considered a very gengeal form of ‘equiva-
lence’ of two matrices. The outcome of\dur investigation was.’
that, with the definition of equivg@n@e‘thcre adopted, any two
matrices of order » having the samte'rank were equivalent. We.

N\

proved that N :
*provided R and S are nom&?n&ular matrices, all matrices RAS8

are equivalent to A. N\

3

In the present chgfgfer we impose a further condition on R
and §; in short,, e require R to be S-1. There are at least -
three points of\y1ew from which one can see the force of such
a restriction;\ﬁre’note them briefly in § 1.3.

1.3. The-condition R — §-1

(@ \We know the importance, in many connexions, of the
chagabieristic equation

: |A—Al} = 0
.«\:Q} a matrix A,

" When we impose the condition
RIS=T
or, what is the same thing, R — 82, and then consider two
equivalent matrices 4 and B related by the equation '
B R4S = B,
we see that for all values of A

R(A—AD)S = B—)L
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This means that when 4 is equivalent to B, each matrix 4 AT
is equivalent to the corresponding matrix B—AI.

If any permissible values of A lie outside the given field F
we shall be obliged to adjoin these values to F so as to make
an exftended field F; and then work in the field F,.

(b) Leb € be a single-column matrix with elements §,,..., £,;
and so for other letters. Let these elements be the current .
coordinates of a point in a system of » homogeneous coordinates.\
and let 4 be a square matrix of order n: then the ms,trlx
relation y — Ax (1)
expresses a relation between the variable pomt,x\and the

variable point y. -

Now let the coordinate system be changed frbm £ ton by
means of a transformation given by 7 \d

n="TE 2O @
where 7' is a non-singular square ma‘trlx The new coordmates
X and Y, of the points x and y ¢ am ﬁhen given hy

c-,,-;,ﬂ
X = Tx;» \ g Ty. (93 '
On substituting from (3). in\the relation (1), '
gty — Ar-ix;
that is, ¢ ~”, Y = TAT-X.

Thus the e.fféci: of replacing A4 in (1) by a matrix of the type
TAT anounts to considering the same geometrical relation
expresseﬁ\n a different coordinate system.

ﬂtermt%ely, we may regord
QO X=Tx, Ye=Ty

as equations whereby, using the same system of £ coordinates tkrougkm;st
we relate @ new pair of points X, Y to the old pair of points X, . Th

equation Y == TAT-X
then gives the relation between the new pair of points,

(¢) Let I’ be a single-row matrix with elements k..., L} 4nd
X a single-column matrix with elements x,,..., &, the I's being

tangential {or prime) coordinates and the x’s point coordinates
5370
E ..
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in any given system of homogeneous coordinates. Express the
equation bty =0,
Le. I'x =0 {4)

in 2 new coordinate system L, X defined b y the point-coordinate
transformation

X=1Tx
or, what is the same thing, x = 71X, The cquation (4) ig {{)w
I'r1X = o O\
and, on writing L' =171,
this becomes L'X = 0. A\ (5)

Thus the transformation of coordinates fOI‘H{xC;d'}\l points and
Primes is contained in the two equations v
X=Tx, L' =17 (6)
Now the hilinear form A&
sl :rj{\\\\:
Is expressed in matrix notatiog‘;h}; “the single-element matrix

N

I'Ax. In the new system offecordinates defined by (6) this
becomes D, =t
A ‘ p \L TAT-X.
Accordingly a bllineg,n‘ii}rm
&~ ay {7)
with matrix 4,(when expressed in terms of a new coordinate
system defigedl’by X = Tx, becomes
2,
_ A\ by L; X;
with ahatrix B given by
\ - B = TAT,
,..\'gf"l}‘at is to say, given a bilinear form I’4x, which fuvolves both
Point and tangential coordinates of g system, the effect of
replacing 4 by TA7- amounts to considering the same bi--
linear form expressed in a different coordinate system,
2. Definitions
2.1. An equation X = Tx, (1
wherein 7' ig g non-singular square matrix, is commonly called
% COLLINEATION. The pame derives from the geometry asso-
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ciated with (1); when » = 3 in § 1.3 (¢} and the point X lies on
the line I’ = 0, the point X lies on the line (I'T-1)X = 0.

As we have seen in (&) and {¢) of § 1.3, the effect of & collinea-
tion on a matrix 4 that occurs in a velation y = AX or in a
bilinear form ¥'Ax is to replace 4 by a matrix TAT-L,

DermaTIoN 124, When T is non-singular and
B=7T471,
we say that B is a TRANSFORM of A and wrife . N
B~ A.
An alternative definition, nseful in stressing the pa};%ié:ulacr

kind of equivalence involved and the association tyijzk}cd]]jnea,-
tion, is y \ ’

DrurNirioN 128. When T is non- smgular\and B = TAT-,
we say that B is ¢-BQUIVALENT o A. ";\

Thus, to say that ‘B is a trrmsform 0f A4’ and to say that
‘B is ¢-equivalent to A’ are two W&»}"S of saying the same thing,
Sometimes we use one form of Words sometimes the other,
We notice a small point in passmg The relation of c-equiva-
lence is reflexive; for if B& TAT-, then
A = g(—'.r\BT — T-1B(T-1),
Nore. Tho use githe term c-egquivalent is not general. Some books
use the term ! %mu‘.m; or refer to equivalence {cr transformation}
‘within the sub»group of collineations’. Other books disregard all
equivalence t}\at is not collineatory, and refer to what we have called
e~ Eq‘tll'\’ﬂﬂitll;‘.e as cquwalence toted s*mi@f;e
\
3. Elementary properties of c-equivalence

1~ Powers and rational functions of A
Tet B = TAT-1. Then

B = TAT-1. TAT1 = TAIAT = TA*T
and, generally, for any positive integer k,

| | Bt = TAMT,

Also Bl = (TAT-)1 = TA1T,

- on using the law of reversal for reciprocals.
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Again, let f(4) denote a polynomial in A. Then, by the
above, F(B) = Tf(4)T-
and, on using the law of reversal for reciprocals,
VB! = T{flay-17-

provided the matrix fld) is non-singular,

It follows that, when g9(d) is also a polynomial am{{ﬂse
matrix g(4) is non-singular, NG

N 3

1B _ pfd)
U RS

o =
That is to say, any rational Junction of 4 u@%}goes the same
mulliplications, by T and T, as 4 dtself. - 3O

3.2, The characteristic equation K. \\”
As we saw in (a) of § 1.3, when NS)

_ oY

B =~ 14

W
R

and A is any number,

T(A—-2DT = B_)7. 2)
Now the cha.racteristk{é;c}u&tion of & matrix 4 is
<O,
Fr 23, O
T AR = 114 ey
PN, = [A--Xl|,

since |TL;]‘§'21] = 1. Hence
O
Whend and B are cequivalent they have the same charac-
* teriglic equation, |
4 ..\: 3
”> “3.3. A sequence of transforms
It is important in the Sequel to remember that, if
A~B and B~ c,
then 4 ~ ¢, For, it .
A= TRp and B = 8C8-1,
4 = P808-1p

= {T8o(rs),

then
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By extension, when
A~B, B~0, .., K~1L,
then also A~ L.

In the sequel we encounter long chains of transforms and the
theorem sought is, usually, that the last matrix of the chain is

a. transform of the first., . A

N
4. Jacobi’s canonical form X )

In Chapter IT we saw that a square matrix 4 of rank ' Was
equivalent, with the wide definition of equwa,lence\We were
then using, to a matrix having r non-zero elerigents in the
diagonal and zero elements everywhere else,\This property
remained true for A-equivalence and the e of matrix con-
sidered in Chapter IT11, We now ask ‘,ffa}n we still make 4
equivalent to a matrix of diagonal tgg'l}e\ when we restrict our-
selves to c-equivalence, that is wheg\we are no longer consider-
ing matrices BAS bub are restnoted to matrices EAR-1? The
final answer is ‘Yes, when af]l the roots of [A—AI| = 0 are
different; sometimes, but r{ot always, when two or more roots
are equal’, N\

There are many wa}s of proving our main result (Theorem
14), a result that Has been known to mathematicians for more
than seventy yedrs. Nearly every book one opens on the sub-
ject gives a, d\ﬁ'erent presentation of the matter and very few
of these piésentations make easy reading. We shall observe two

principle\& in our own first treatment of the matter, and these
are ¢ o)

\(0) to work wholly in matrices and to avoid appeals to out-
gide theories,
() to choose the more elementary and obvious in preference
to the more advanced and subtle argument.

We reach the final ‘classical canonical form’ in three stages.
Starting from a given square matrix .4, we first find a transform
of 4 with all zeros below the diagonal [§4.1, (4)]; we next
obtain Jacobi’s form [§ 4.4, (8)]; and the final form is obtained
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in § 5. Later [§ 9] we indirale
is less elementary in character.

Once the reador hax mastered Lha fucts ane e
the structure and PROPErtios of the bt rices jon
prefor the logs olementary to tho 1mor.
work. Tho main point of the (somewlg lengthy) clernentary tregs.
ment is to show how simple manipuling ions ot the rows and columng
lead inovitably to the classica] canonical Torn of Theorem 14.Its,

OW, & confossion of Iy own shorteomiing, bt | was navey able
really to underatang any of the pnhlisfu| proofs ofr 'I‘Imorggﬁ'liﬁnti]
I had evolved for myself the sirnp cdenliliuns of §$§ 4,88 and, for
the alemenba.ry divisor BIguments, § 8, \

a nminch shortep treatment tha

eurno familiar wi
olved, e will probab]y
cletnentury g ) stagos of the

L 3
S
e

&L Zeros below the diugonas o\*l.\\

Let 4 be g given square matriy of orderadland lot its charae-
teristic rootg be Afyen, Ay which are not necysmarily all different,
Adjoin to the field F, in whicp, lic the @rments of A, such of
the humberg Ay, A, ag lie Outside'Fﬁnd carry out the suhse-
quent work in thig enlarge( field . say Fy {ef § 1.3a).

Since A=A 1) = 0, the quat}ib‘n

Azs Az (1
hag g on-zero solution T8 'slngle-colmnn vector with elements

xl}" Talr ey Loy (2}
.I)'Q}l'-s!@;inguIar]L matrix having (2) as its first

a 1%, Also X-1 the reci-
Procal of X, 3FhE matyix

. :'\w [X:.'i”XJ]’
Where %;;13 ‘the cofactor of Ty in [ X,
Fm{her

N\ Xz = X,
AN T =0 (5 ]
) _ 7t Ty (2 1),
C tence the fipgs columy of
is A, fo]] T
8 A fo i : i
1 10%0wed by 53 Zerog, Accordmgly, 4 is c-equivalent to
X-4x 4 _ Fl b»] (3)
i == s EBI|°
T Sueh ‘an alwayy p, b
lagonal Placag aftgi tﬁeccé;l::mted_ Ir 2 % 0 we put unity in the T?admhg
o afte ho WO put zere Sverywhere else save in the

Want whey ge of;

- B . we
% = 0 ang, pyp. o f)wa from this pattern will give what



COLLINBATION 55

wherein b’ is a single-row submatrix, o is a column of zeros,
and B a matrix of order n—1. Moreover, the characberistic -
roots of B are A,,..., A,; for, by § 3.2, 4, hag the same charac-
teristic roots as 4, namely A, Ag,..., A,

Rince A, is a characteristic root of B, there is a non-zero
column vector y with elements

Yoo Yszo s Yne ' A\
for which By = A,y. Let ¥ be a non-singular square r@?airix
baving ¥ as its first column; then the first column of@’HBY
(cf. the details of X-14X) is A, followed by n—2 zera{ Jﬂ"urther

when Z = diag{1,Y}, 714, 7 6

is a matrix of the formf

wherein O is a two-column mafrix of zeros and €' a square
matrix of order #—2 whose eharacteristic roots are Ag,..., A,.
By its method of derwafaon

Ay — B4, 7 — X 4K
is c-equivalent to AN We continue the sequence 4, 4, 4,,...,
4, of c-equivalont matrices until we have dealt with all the
roots A,,..., x2%",}1"}16 final matrix is of the form

~&
\‘“.f )‘1 Gy Gy - - O
{\ Ay mpy . . Oy
. ™ Y o == 3 (4)
"~ :"\: ¢ - . L] . - -
™ Au

I which all elements below the diagonal are zero, As we have
seen in § 3.3, (4) is c-equivalent to 4.

The form (4) is not unique, for we can arrange A,..., A, in
any one of n! orders. We shall suppose in the sequel that, if

T This detail requiros a little ealeulation, In submatbrix notation, with o

densting a column of #n— 1 zeros and o’ & row of n—1 zeros, Z-14, Z is, by
deﬁmtmn,

[1 ] Y o Y [h MY _ [N Y
° ¥ [o Y] [o Y—l] [o BY]  lo ¥—BY[
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there are equal roots, these equal roots are not; separated as we
come along the diagonal of (4).

We go on to modify further the form (4). The next section,
§ 4.2, is concerned with preliminary details of notation,

4.2. H changes
We recall from Chapter 1T, § 1.3 that N

N
P{I+-H),) ¢ “
is the matrix obtained from P on replacing ¢; (the Jébcolumn)
by ¢;+ke,; that (I—-H,)Q x,\’\’“.

18 the matrix obtained from @ on replacing p;,\(ﬁhe ith row) by
Pi—hpy; and that \
: o I-H; = (I+Hﬁ}§§"
This last equation shows that O

B = (I-H)P(]+ 1,

is a transform of P, We reﬁep"isa R ag an H;; change of P and

when we perform i succesgion a number of such changes, e.g.
when we consider

N\
BN H) B B4 8, — (1) B EL),

we refer to thésresult ag an 77 change of P. As in §33, an
H change of £ ¢ hevessarily a transform of P,
4.3. Higlhinges of (1)
In ,&'ef‘matrix {4) let oy 52 0: a5 5 glance at (4) shows, ¢ < §.
0 we form the produet
I~ Ho( I Hy, (®)
\/the only elements of 4 whi
(1) and (2) of the diagram: those on {1) are changed when we
replace ¢; by ¢i+hc,, those on (2) when we replace p, by p;—Apj-

~ - The other elements in the ith row or Jth column are unaffected
because all elements below the diagonal are zero,

The element %4 18 replaced in (5} by
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Suppose that, in (4),
) )(IZAz::"‘:)l‘i
and that A; 5 A; when j > 4. On making a succession of H,;
changes with j = ¢41,..., » and with the appropriate choice of

i ]

ts

L 4 ‘g‘ *
™Y

N

13.;

D;A‘cﬁsm 1.

h for each, we can replgc\a by a c-equivalent matrix of the
same form as (4) but hQng zeros at

'“ﬂﬂ: Qggter e Xype
Working with &he (a-— 1)th row, we can replace
\~ /Mg 14+1s g—pd4es s Kian

by zerog} \and 50 on until the whole rectangle above the (i-- l)th
row ahd‘ to the right of the ith column is zeros. Let the result-

atrlxbe
A B o - B0 . . 0]
0 A . . Byul0 . .0
g=1|o0 Moo . 0, (6)
o o . . 0 |
] i y
L0 0 0 | .
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or, in submatrix notation,
B, 0O
s=1a oL
0 v

where the latent roots of y are A,;,..., A,. Then B is an H change

of «, and so B o~ A

Before proceeding we note that, if A, is not a repeated root,
B, is the single-element matrix [A] and . AN
8= B, o ,‘f’”;’
o ] KO
where o’ denotes a row and 6 a column of ZETOSN 3
In the same way we can replace y by a matrix
B, 0O \
O 8 H ':;\\./

- ‘the fransform being obtained by }i&z}ns. of H,, changes of fin

- of 4, which has %iom-.

Qﬂd let X denote ¢ typical
e @ matrix of the type

which 8 > > 4. As a glance a%(6) shows, such a change, .
which involves the operations "

cs—}—‘.‘ké*’;’ pr_hps!

will not affect the fixgh. s rows and columns of 5. We can
continue this procegs)y

til we obtain a transform of «, and #0
“Zero matrices B, B,,... diagonally placed
and has zeros gverywhere clse,
)\ &
4.4, SKmmary
Wha;g}%ve have proved so far is this:
";@EOREM 13, Let 4 hgpe

k distinct characteristic roofs Afyerss Mg
root. When X is an r-ple root, let B

A b12 - " b]'f
0

B = )l . . b2r

] (T)
| 0 0o . . 2

and wkem. Xis @ simple root, let B be the single-element matriz [A]-

Then A is c-equivalent to q mairiz

J = diag{B,, B,,..., B} (8)
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in which By,..., B, are matrices of type (T} corresponding to the
k distinct values of A.

The form (8} above is called, sometimes tho INTERMEDIATE
FORM, somefimes JACOBI’S CANONICAL FORM. We go on to
deduce from it what is commonly called the classical canonical
form.

5. The classical canonical form \\

We showed in §4 that a given square matrix 4 Wa,a ~c-x

equivalent to a matrix of the form O
B, 0 . . 0 RS
J = ¢ B, . . O . ‘}\ v (1}
o 0 . . B,,c D

In this, the O’s represent null submaQMes, Bi,..., B; corre-
spond to the % distinet roots of EA\A}\I [ =0, acnd each B
{corresponding to an r-ple root A) iy of the form

RS
0 A . » bzr . (2)

|

We go on to show that each B can be replaced by a form
SO diaglOQ), 6.,

where eac{@ﬁ{ls of the particular pattern given by

Y 1 A1 0
\Q(A) [A],_Oz(h}z [O A], Cyd) = [g g ﬂ
Inéeneral
' A1
Al
o ={ . . . . I (3)

Al

A

In this, each diagonal element is A, each element immediately
above the diagonal is unity, and ail other elements are zero.
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Norarion. We indicate a diagonal matrix in which i\
enters p times, Cy(A) enters ¢ times, and so on by the notation

diag{CY(A), CIM),...).
_ DermaTion 13. When C\(}), ColA).... occur in a diugonal matriz,

such as that given above, they are sometimes called ELEMENTARY
CLASSECAY, SUBMATRICES.

5.1. @ changes A ~\\

In addition to the H changes of § 4.2 we shall obt#inErans-
forms by interchanges of rows and colummns. We tecall from
Chapter II, § 1.3 that, when I; is the result 9&‘1'1“terchangmg
the ith and jth rows of I, &

(i) I{;‘ = (Iﬁ)_l’
80 that ;; A1, is a transform of 45 A

() AL is the result of interchanging the ith and jth columns
of 4; O

(iii) I; B is the result of inj;éféﬁ;mging the ith and jth rows
of B, A\

We refer to I,; 47,, as &6 change of 4.
5-2. The local effestiof H and G changes
Any H or @ chénge of the matrix (1) that affects only the
rows and colurtins which eross in the submatrix B, leaves all
the Tomaining B’s and all the ¢'g unaltered. Accordingly,
when We*a;pe studying the effect of such changes on J, we may
treat\tlgei:h as though they were operations by matrices
™\
\ I+Hy I-my, 1,
the submatrix B, and acting solely on this
do in 3] subsequent work.

" ;"“Iiffthe samie order as

/) submatriz. This we
5.3. X changes

Consider 5, matrix, of order 7,

Apy 0 . .0 o

P_:O?‘pz..oo

e
s .
b3

A

9 0 o
6 0 o
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and the matrix

X = dia‘g{I: D1 P1Pass plpz-"f"’r—l}s.
where no one of py, py,... is zero. The matrix XPX-, when
ealculated, is found to be C.(A). We shall refer to it as an X

change of P.
Now suppose that P is embedded as a diagonal submatrix
1n, say, K = diag(B, P, P_orhs ‘ (3) O\

where P, P,_,_, are square matrices of orders s, n—s—r. WB
can replace P by C(A) and leave P, F,_ , (and aill zerq»ayb-"
matrices of K above and below the diagonal submatrwes) “un-
altered by operating on K with a matrix ' 0,’\\ '

(X)= djag{I X,1 —s-r} . .’..3\\.

where I, I, .. are unif matrices of orders\\s,, n—s—r., As a

—&=T

brief calculatlon {with submadtrices) W]]l shﬁw
(X)K(X)_l = dlag{ XP‘X&‘ 2 ﬂ—-s-r}
Thus, the matrix (XK@ (8
is a transform of K, has C{A) W,ﬁéfé K had P, and has its other
elements identical with thosq of K. We call (6) an X change
of K. ' \
We use X changes m\our later work.

5.4. Note on ﬂrgge&uﬁ'e

We turn ourj\é.t%ention to any one B, of (1). Tor convenience,
we drop & )suffix and consider (2) as a typical submatrix
of (1. & O

We\make a further mmphﬁcatlon, chiefly so that the reader
r(\le’;follow the subsequent argument with a minimum of supple-
mefitary caleculation. Let B* be the result of pufting A = 0 in
B. Then

B = A{-B*
and, for any non-singular 7',
T-1RP = M+ T-1B*T; (M

that is to say, if we obtain a transform 7-1B*7 of B* and
insert A’s in the diagonal of the resulting matrix, we obtain .
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the corresponding transform of #. W

carry out all our intep.
mediate caleulations with 5+,

8.5. The simple case
We first consider

o b, . . b,
0 0 b,
. © By
B = o . \\1‘&)
O U . . 0 (:.:.'x.
when biabyy b,y /0, O (8
The transform

I-—-W)B*i411,) (j > ’z.)’\}
(i} leaves unchanged all the zeros in amd F)f?l(_)\’( the diagonal

of B*, ,'\\J

(ii) leaves the elements bia, by, NT(N;:tltel'(‘(l, so that (9) is
also true of the transform; ()"

(iit) has b;;-}—kbu as the jth,x;:lg;'nient in the first row.

The choice 4 = —buyfbyy niikes the Jth element in the first

TOW 4 zero. Thug g succession of H,; changes, involving

\
Hn}, Hy, .., H,,
gives g transformlu\:if‘B* whose first row ig

A

S0 B, 0 0 L o

and WhOSfﬁ :filﬁlﬁents bas, bagy... are those of the original B*.
P erfomg on thi

) 8 transform g ion of H,; changes,
mvol\ﬁcﬁaé succession 3
O

[3

w\’ w4
\,: 0 612 0 0 o 0
00 55 0 ... o
and, Proceeding roy by row, we obtain
0 b, o 0 0
0
B p - " lw D
g 0 9 0 & 4,
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A final X change (cf. § 5.3) gives
B* ~ ((0),
and g0, by § 5.4, B~ C.(A).

5.6. The more difficult case: first step
We now suppose that

b130ss . by = 0. (10}\\

If some by; 5~ 0, we write B* = B” (see below), If all. d;hex
elements of the first row of B* are zero, we ‘Isolate’ the leé.cﬁng
element and write B*, in submatlrix notation, as \\*

[01(0) o'] . \

0 B v

where o' iz & row and o & column of zeros’\I\f'the firat row of
B’ is-all zeros, we ‘isolate’ its leading e‘lqment and, unless B*
is merely diag{C7(0)}, we can proeeed thus until we reach a B”
with at least one non-zero in its ﬁfst tow. Thus

FITHER B* = diag{C} t{)}},
OR B* = ding{CY(0), B} (v > 0),
0 BB, .. b
po |00 %
| \B 00 .. 0

and at le&}\&one element in the first row of B” is not zero.

In the\latter event let b7;(j > 2) be the first non-zero in
5;%513, . Then suitable Hy, changes involving & = j+1,..,7,
givg) as in § 5.5, a transform of B”, D say, in which d,; is the
only non-zero element in the first row and all zeros in and
below the diagonal remain unaltered.

Suppose the second row of D is

0 0 dss ey d%l
If all are zero, we pass at once to the work of § 5.7, which deals

with the third row. If the first non-zero is dy ({ > 2) and I # 4,
we proceed thus: :
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Suitable H,, changes, with & = I4-1,..., {, give & transform of
D in which
(i) the first row is the same as that of D,
{ii) the second row has just one non-zero clement dy.
When ! > 4, that is, when the non-zero in the second row
lies to the right of the non-zere in the first, we have attained
our immediate aim, When ! < j, we make the ¢ change ‘in
- change the first two columns and then the first two, .rp}rs’
" (noting that j is now necessarily greater than 3j; t?igtréms-

forms \ ¢
0 0 e . dl} wea ""‘2
o
0 0 o dy . . 0
into a matrix whose first two rows are )
0 0 .. dy L
20
0 0 . (B

Thus, when I # j, we secure acfransform of B”, say F, whose
first two rows are N\

0 ~0*:’:.'?. € e '
o .{?&\0 e v By ey (11)
the one non-zero gl@w}w in the second row lying to the right of
that in the first 30w
. I_t remains® consider what steps are to be taken when?=j.
This can-liappen only when j > 2. Let the first two rows of

D he O\
A 00 .. d; 0 0
‘.\
N . 00 dy; dajs
~LOn taking (I—H,)D(I+H,) (12)

/ with b = dy;fdy, We obtain a zero in place of dy,: either all the
_elements of ‘the second row are now zero (when we pass at oneé
121; 113)he work of § 5.7) or we can proceed, as before, to the pattern

To sum up, we now have a transform of B’ say E, in which

(1) t]fmere is just one non-zero ey (§ > 2) in the first row, and .
(it} either the second row is all zeros or it hag just one non-
zero element, which lies to the right of e,,.
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5.7. The second step

We can procced in this way, row by row, ensuring at each
step that a row has at most one non-zero and that each non-
zero lies to the right of any non-zero in a previous row.

For example, consider the third row, not all zeros, when e,;
and ey are the non-zeros of the first and second rows. If neces-
sary, make a preliminary transformation (or transformations)
of the type (12) to ensure that the first non-zero, e, say, of '\
the third row is not in the jth or ith column. This done, H\
changes (as in § 5.5 and 5.6) make e, the only non-zero m’the
* third row. Finally, either the non-zeros move to the rlght as
we descend, or suitable @ changes among the first thee TOWs

and columns will make it so.7 &
When we have thus worked through all the ‘Tows, we have
{ransformed B” into e\
. . o Pyg . R \ W . .
T L P ()
Ce e 8N P
in which '

(i) there is just one nme?‘o Py with § = 2, in the first row;
(i) each remaining rowWhhas at most one non-zerc and the non-
zeros, if there are\sﬁwh move to the right as we come down
the rows. G :
It may be noted in passing, that there are at least j—1 rows
of zeros wheils > 2 and that, when j = 2, the condition (10}
ensures aﬁeast two rows of zeros in B".

5.8, "The third step
\We now transform P by moving its non-zero elements to
their appropriate positions, one place to the right of the
diagonal. Suppose, for example, that the non-zero in the first
row of P is p,;, where j > 2. Then

Q = I Pl
has ¢, as the only non-zero in its first row. If the jth row of

+ Compare the @ change that precedes (11).
5476 :
F
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P is all zeros, then the second row of @ is all zeros and we can
consider at once the third row of ¢. If I’ has a non-zero D
this appears as a non-zero q,,, possibly lying Lo the right of the
non-zeros in the later rows of ¢}; we can, by suitable & changes
ag in § 5.6 and 5.7, replace @ by sn £ in which the non-zeros
move to the right as we come down the rows. All clements in -
and below the diagonal remain zero.

At this stage we have replaced P by a transform, P, sa,}(,\\{n
which RITHER the first two rows ave

Pz - - ‘ O
. - * ’pm - .‘n‘;’
i o' righ
and non-zeros (if any) of later rows move to tlie right as we
move down the rows, ok the first two rowy e
Pa - - ‘ N

and the non-zeros (if any) of later \f@WS move to the right as
we descend.

™

We can move py, to the pos;tmn Psg and make the necessary -
G changes to ensure thats auéceedmg non-zeros move to the
right as we come down, the rows. The I, changes necessary t0
put py into the pomtlbn Pg3 May bring a line of zeros into the
third row. &\~

Thus we cam,\step by step, bring the non-zeros into the
positions One\place to the right of the diagonal. Let the result-
ing tramﬁarm when all non-zeros are in position be denoted
by T4

N{ﬁfr V has ¢ rows, of which the last is necessarily a row of
7@1:08 1t may have other rows of zeros. Let the kth row be the

\ “\first row of zeros. When & — t, an X changet gives

V ~ G0y
When & < £, we isolate _
0 vy .o 0
0 0 Vr-1,%
o 0, | 0

T Compare § 5.3. To faes,

k =t only when (9) holds. When (10) holds
¥ must have at least two rows

of zeros {of. end of § B.7).
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as & leading submatrix, transform it by an X change into C({0),
and obtain - [G‘k(()) O]_

0 K
In this V] is of the same type az V, save that its first row may

bé all zeros,
There are three possibilities:

(i} ¥ is all zeros, when '\i\
V, = diag{Cy*(0}}
{ii) ¥ has a non-rero in its first row and so is of exa@ﬂy t}le
same type ag V', R

(iii) ¥, has zero rows at first and then at Ieasjgszéiq}a NON-zero
before we reach the last row, when, as for B¥\and B’ in § 5.6,
W = diag{C5(0), 73} (s S?"O}

and ¥, has a non-zero in its first row. \\\‘
Thus V transforms into one or othér of

C0), dl&g{ck@') Ci4(0)},
ding{Cy(0), 7, ~\thiag{Cy(0), C4(0), T},
the matrix ¥, being of th'q\sa,me type as V and having & non-
Zero in its first row.¢ W‘e can apply to ¥, the method used for
V and continue until we have exhausted all the rows of V.
Hence, in &]l cii‘bﬁmstances

WB o ¥ o~ diagfCi{0), C4(0),.}

the nu of submastrices (! and their suffixes depending on
the E!el';nknts of B”. But, by § 5.6, either
O mew
Y% - B* = diag{C5(0)},
or B* = diag{C7(0), B} (p > 0).
Hence, in all circumstances,
B* ~ ding(0(0). Gy (19)

The suffixes 7, m,... are not necessarily different and do not
necessarily inerease as the sequence proceeds. The matrix (14)
_ is, however, fully diagonal when reckoned by submatrices and
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appropriate G changes readilyf give
B* ~ diag{C}(0), C3{0),...}, (15)

where p == 0 implies that | does not occur, ¢ = 0 that C, does -
not occur, and so on for other affixes. '

Finally, on referring to § 5.4, it follows that

o B ~ diag{CP(2), C3(A)....}, (18)
where p--2¢-f-... is the multiplicity of the root A. N

Summary. We have thus proved that each matrix By, B,
of (1) may be transformed into the form (186). Morgdwzer, in the
light of § 5.2 (the local effect of H and & chaing‘iz‘s') and § 5.3
{how to effect an X change of a submatrix eml;g&i&ed in a larger,
diagonal, matrix), the transformation of eagh B can be obtained
by transforming the full matrix of which' B is a submatrix.
We have thus proved that, when J istthe matrix (1),

o J ~ disg{D,, Dyv.,, D},
where each D, is of the form gi*gén .by

| D = diag{C7(), C§(N),...)
We have thereby proved the following theorem to be a conse-

quence of Theorem..l‘&\

e\
\ W

¢ & \v/
THEOREM 14: Lot A have k distinet characteristic raots g M
qnd let A de@oﬁ’aﬁ typical root. Then A is c-equivalent to o matrs
p :.\ 0= d'i&g{DlsDﬁ:"-:Dk}’ (17)
in w"‘?f@’})p-u, Dy, are submatrices that correspond to the k distingt
’:",?{8\ 10005 Ay, and each D is of the form given by
\ - D = diag{07(}), C§(2),...},
“where p+-29-+... is the multiplicity of the root A.

* The form (17) is usually called the CLASSTCAL CANONICAL
TOBRM of the original matrix 4.

5.9. The @ changes of §5.8

_ When we think of collineation as a change of variables, 28
in § 1.3, it is all but ohvious that a matrix

diag{C(A), C,,(0), C,(A),..}
T The details are indicated in § 5.9.
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can be transformed into one in which any C,’s come first, then

Cy’s, and so on, but it will round off our present treatment

more satisfactorily if we make the actual transformation by

means of the appropriate & changes.

' We indicate elements a,y, @,... by writing only the suffixes,
" thus: 12, 34,.... We consider

1 12 13 . 14

i ' . {\
4 21 22 2324 N\
81 32 83, 34f &
41 42 43 44 W\
As a little calculation will showt ) o

RS
Gio Gos Ga A \V
transfers the element 44 to the ’cop-left positrfon' in fact

__;1\ &2 43

14-~1‘1 13

(&) = )

G Gog Gy 4 24421 22 23

~34 31 32 33

(18)

This type of G change )iv{}:lﬁ)rmg any C,(0) in (14) to a top-left
position in (15). . ¢\J .
Again, let ug cons’?ier, for example,

.,{f; 1112 13114 15
,;\’w‘ 21 22 23124 25
N A4=|31 32 3334 35
O 41 42 43 44 45
\(»' 51 52 53 .54 65
“We see at once, from (18), that
44141 42 43145
14111 12 13 15
Gro G Gog A =241 21 22 231 25
34131 32 3335
54 : 51 52 53 55

T We use @y, A to indicate the & change Ty, 471,,; and so for other suffixes.
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and that 44 45 41 42 43
54 55 Bl A2 5%
Oy Oy Gis( G G B A) = 14 15 11 12 13].
24 25021 92 9y
34036031 32 33

This type of G change will transfer any €,(0) in (14) to,its
appropriate place in {15); and the generalization for t-ransfet*?mg
a submatrix of order three or moro is built up in the sameway.

Y

5.10. Deduction of the canonical form from the, tumber of
‘chains’ in a matriz K7, \
We consider the submatrix B which corres}dhds [ef. (2)] to
an r-ple root A of the original matrix; O )
A by . (O,
WO
B 0 A N by,

\ W

Il

N/
L 3
.

o @¥'. . )
First modify this, as in §j‘5§i‘, to B* by putting A = 0. Next
apply the appropriate’\ﬂ and G changes (as in §§ 5.5, 5.6) t0
obtain a transform Qf,\B*

%

by - Py
2O~ F= P

m Whlicig{each Tow containg at most one non-zero and the non-
Zere8.move to the right as we come down the rows.

."\.j’: € know (from § 5.8) that this has a transform

C = diag{C(0), G, (0),...). (19)

We can determine the valyes of 1, m,... without recourse to the actual

We consider only the non-zero elements of P and denote &

nor{—zéro elen%ent in the ith row and jth column by (i,5). We
notice that, since the non-zeros of P all lie above the prineipal

non-zero elements

G3),  (4.k)
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are said to be LINKED; diagrammatically,
TOow (%,4)
oW § o——(4,%)
the heavy dots marking the ith and jth diagonal positions,
When m non-zero elements
) GoB) o (8) (50)
are Imked in succession, we say that they form a craN, Wern
use these links and chains to find the canonical form of P, , N
If the first row (first [ rows) of P has all zeros, we can, ’by &
changes, interchange rows and columns so that this row \fows)
comes after a row containing a non-zerc. Consider tl\qs one (if
needed) and suppose that P has a non-zero elernm@ {1,4). _
(#) Let the jth row of P be all zeros. Makeghe'one ¢ change
Gy (i.e. interchange 2nd and jth rows, 211Q\a:nd jth columns).
The resulting transform of P is N .
(1,2) | 2o’
Po=| AN

LN
XY

oSt @
which shows that the canoméaﬁ[ form of P contains a Cy(0 (0}
(b) Let the non- zero, \Ll\j) be the start of a chain
(1,5, {g\@ o (8,8 (m elements)
the chain ending(when 13he tth row has all zeros. Dlagram-
matically the eha,:tn is -

—— (L)
N

AN (80
\T]}BG changes Gois Gory s Gpaay
performed in succession (interchange 2nd and jth, 3rd and -
kth,...) change the diagram of the chain to

— L2
2,9)

I_ (m,m+-1)



72 COLLINEATION

and give a transform of P

(1,2)
. (2,3) 0
I)S = ('m) ?H"+_ ]) f

e . -

which shows that the canonical form of £ contains a C,{,‘_\'}{O).
Thus A
& chain of m non-2gro elements in P means that: :Jt@ cahonical
form of P contains a AN\
Cm+1(0)‘ "\\ ’

All non-zero elements of P not accounﬁé?[’ for in the chain
just dealt with have been moved dowiyto £, and the inter-
changes of rows and columns used te'fitove them down cannot
affect the linking of elements. %\ﬁt\-aircasc’ (i) can

™ ¢
3

)

~\ ‘
Q ‘ ‘
N

'@ (i)
hecome a stairease (if), with a different set of lengths to the
separate §t6ps, but the number of steps and the elements linked

remain.anchanged. Thus, apart from the one chain in P
%c’cgi;t;ted for by the C,,,,(0), any chain in P exists as a chain

}E\ > We can repeat the whole process in R and continue unti
’“\i.‘?e have used all the distinet chains that oceur in P. The final
© result may be stated thus:

L'et P, with n rows and columns, contain & (and only k) distinct
chains, having m,, My,

» My, MOT-2er0 elements respectively. Lot
Mytmgt- .ty = n—r—k.
" Then the canonical form of P consists of

Cnia0), Copis(0), .oy Cpra(0)

- together with the » elements ench make
up the order of P, et o GO) mecessary o
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6. The Segre characteristic of @ mafriz

6.1. Let A be a matrix, of order », whose distinct charac-
teristic roots ate Ay, Ag, Ag...., Where A, is an r-ple Toof, A, an
s-ple root, and so on. Then r--s-¢+...= n. The classical
canonical form of 4, established in Theorem 14, may take many
shapes, of which the simplest is - '

dia‘g{or(Al)sOs(?lz)soi(ha)s“'}‘ ‘ (1) ~
Tn this matrix one classical submatrix corregponds to each rogt..\\
The form (1} is specified, apart from the values of the X's, by
e

the symbol [rsé..]. L (2)

77

When the submatrix D, of Theorem 14 is notﬁﬁahe’ single
elementary matrix C,(},), but is itsell compoumiéd of two or
more elementary matrices, say :

O
A ~ dingf0,(), G0, Cak o) (3)

we specify the form of matrix by a symbol
[wyystal (4)

enclosing in a parenthesis t-hajé,i;dérs of the submatrices in (3)
that correspond to one and the same root; and so for any root
Ay when the correspondj;;,{% involves more than one elementary
matrix. ¢\
Exampres. When 7 = 9 and the characteristic roots are wo,
@, Ba 8.8y, g J&..')’: the Symbc’l
R [2(12)(112)} (5)
indica.te{\fhé'matrix
R \ diag{Cy(«), C1(8), Co(B), Cily). G, Gl
siile the symbolf [234] (6)
Nodicates the matrix
diag{Cy(), Os(B), Caly)}-
6.2. Tt is possible to write down in gymbols all the types
that can ocour when # == 3, 4, or any other definite number
that is not too large. For example, when n = 3 the matrix 4

1 It is convenient to put the smaller nurbers first, but a symbol [4 3 2] or
[4 2 8] indicates the same type of matrix &s [2 3 4] apart from an obvious inter-
change of rows and columns.
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has 3 charactefistic roots, say «, f, y, which may or may not
be distinet.

() Let o, B, y be all different. The classical form must be

diag{C (o), C,(B), C\(y)}, i.e. [111].
(i) Lot & = 8 £ y. The classical form ix

either diag{Cyle), Cy(y)},  1e. [21], N
or ding(C,(2), Cy(ed. iy}, e (1) &

(i) Lot o == 8 = 5. The classical form may he agtyone of
the three forms Cyla), e (3, )

diag{C;(a), Cy(w)}, Le. [(12) J\\
diaglC (o), Cy(@), Cyfal), i [
A symbol like those in (2), (4), (5), (fi)\(),t‘ any of the symbols

[111], [21].... above, is called the SEERE CHARACTERISTIC of
the matrix. 2O

{

7. A theorem concerning diagondl matrices
Let M = diagldl,, M,,..., M),

where the M, are square'ii’ubmat.rices, possibly single-element
submatrices. Think of W/ as set out, in full, each 3, being set
out as a square, aftay. In §§ 8 and 10 we shall be concerned
with the deteglﬁj}ants of minors got by deleting rows and
columng from I when this is set outin full. Tt will be important

to recogp\jze\at a glance that certain of these determinants are
zero,

T%EOEEM 15. When we delete ¢ rows and columns Sfrom M in
awc\h @ way that we delete more rows than columns from a given
of the resulting minor of M is equal to zero.
Proos. We may, on changing the order of the rows and

colurans of A, Suppose that M, is M,. Let the deletions from
U be E.uch that  rows and +s columns of M, remain. The
determinant of the resulting minor takes the shape

a’lI . . “’11- . . . Lr+s

0
a . . ’
" Gy o . L

o N I
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where each O represents a block of zeros and N is an array
with more rows than columns. The Laplace expansion of this
determinant by its first » rows is manifestly zero.

CoroLLARY. Every non-zero minort of M is either a minor

of o submatriz M; or is the product of two or more minors of
M,..., M;.

8. Elementary divisors and the Segre characteristic . {\

8.1. Let ¢ be a classical canonical form, of order n. 'We '
consider the mafrix A —C, : (1)
where I is the unit matrix. *

A
Let the H.C.F.’s of the minors of orders 1, 221'\;;3 be Di{A),
D,A,..., D,(A). Then (Chap. IIT, § 6) the in¥ariant factors of

(1) are Ey{A), Ey(A),..., E,{A), where \;
B,= D, Fy=DyDy - \J@_ D,/D, @
We go on to determine these functmnﬁ‘ i terms of the Segre
characteristic of C. N\
8.2. Take first the simple cas&When ¢ = C,(2). Then
Aeat —1
..Q\\ A—o
N—-0j&dM . . o . : (3)
AN A—a —1 '
\2" -

and D = (A&a) The minor obtained by deleting the first
column a:Qd the last row of (3) has the value (—1)~ and so
the ¥ &}B‘ of minors of order r—1 is unity; in consequence,
all mmors of lower order have unity as their H.C.F. Hence
\ ). D=Dy=..=D_ =1, = (A—af,

and Ei=Fy=..=E ;=1 E,. = (A—a).

Now consider '
C = diag{C,(=), C(B), Cly}s--J-
The Segre characteristic of C is

ret..],

¥ By minor we mesn & determinant obtsined by deleting an equal number
of rows and eolummns.
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:‘i.\

of order «; the characteristic roots are «, B, v,.... Hence
D, = M—C| = A—af(A—ByrQA—y)....

As we see from our discussion of (3), D, _, cannot have A—g
a# o factor; neither can it have A—8, A—y..... Hence

Dl = ‘DE T = ‘Dn—l =1, D, == (’\—C‘)r(’\_ﬁ)"":
and 8,

N
El = Ea === Eﬂ—l =1, Eﬂ = ('\__a)r((\_ﬁ)s. N

The elementary divisors of AJ—C ( Chayp. 11I, §z§5 are the
factors (A—a), A—B.... of E,. We have provct{t}ien that
. 2, N
the elementary divisors of A —{rst..] are L&
B e D
these being all associated with the one z‘?;v@}z"&nt factor E,

- and al
other invariant factors E,_,..., B, arg-anaty.

8.3. Next consider C = [(z y)}, Wherein « <y, 2+y = 7 and
the r-ple characteristic root g " Then

e R A} @
&\ 0 CyA—a) '
where C7(A—a), Cyd>-a) are of the same type as (3) and have
Y rows reﬂpegt.i:}ly, Here
~'\.':“’ 1)’. = [AI-O‘ — (A_&)1+V_
¥ o080t by deleting the first column and last row of
Cy()l-'@’w,ﬂl have no factor A—q arising from the C}, part [cf.
§8"~Zb t.Wﬂl have the factor {A—o)* arising from the O} part.
:.MQYeOVeI', €very non-zero minor of order n—1 taken from
) | I —O| must containt either the whole of (., when it has & .
fa..ctor {A—w)®, or the whole of €, when it has a factor (A—a)¥.
Since z < y, the HLC.F. of (n—1)-rowed minors of (4) is (A—a)*
Thus B ; = (\—a) and
E,=DID_ | = (\—ap,

~ Again, the minor of order »—2 obtained by deleting from
(4) the first, column and Inst row of hoth, C; and C, is equal

Themj:;

T Theorem 15 shows that if i
» I we are 1, . i deletion
of & Tow from €3 muss be Socomme © have a non-zero minor, the

ed by the delstion of a column from Cj- _
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to 1. Hence D,_, = 1 and, consequently, I} ; = ... =D;=1.
We have thus proved that :

D=..= D=1 D= A—a), DO = @A™,
and
E=..=E.,,=1 E_,=Q@Q—cfF E= A—a)¥.
Accordingly, the elementary divisors of AI—[(zy)] when '
z < yand 2}y = r are \' ' ‘\\\
A=, (A—al, O

the former being associated with the invariant factox:ﬁ:_’ﬁ the
latter with E,. ON 3
8.4. Now embed the [(zy}] in a larger matﬁ}%;)f order n,
say \ ' '
[{xy)st..-], 'x;\ v
the characteristie roots being o (r timegsw+y = r), B (s times),
and 50 on. Our preceding work showsthat
D, = (—a R BPO—7)...
D,y = =, Ja= . =D=1,
and that the invariant .i"a’\étbrs are, by (2),
B= .. B ,=1, B,y=}—a)
B (P —BFA— Y-
Thus the elgxgéﬁt}éry divisors of A —[(zy)s¢...] are
x{ (A—a)y forming B,
M), A—Br, (—y¥, .. forming I,
Vs Nad X .
“\85. In the light of Theorem 15 and its corollary, the exten-
Xiﬁn to more complicated forms is immediate; for example, the
elementary divisors of

M —[(xy2) (wo)pq..]
with characteristic rools o, B, V..., WhEN

r<y<z and w< O,
are

Q—aP, (—al, (—of, OB QAR Q=P
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moreover, the snvariant factors K, ,..
By = (A—a),

B,y = (A—xp(A—f)n,
E, = (Ao y)e....

In all cases, the indices that occwr in the elrmentary divisors of
A —C are the numbers that occur in the Segre churacteristict o{*O.

o By g ure equal to unity while

When one is a little practised in handling these canp}ma,l
forms there is no need to state how the invariant ifa}t:h(")ré are
made up, once we are given the complete set of, elementary
divisors. A set of elementary divisors ,x'.\\ )

A—a), A—=BF, A—y), o

3

~ indicates of itself that all the divisors aré hssociated with E,

and that all other invariant factorg/JF,,..., ¥, , are unity.
Again, the set of elementary divisgr§)

Aoelt Qe Qo QB OB Op,

where® < y < zand » < v, indicates of itself that all invariant

- factors from E, to E,,_; axgunity, that

N

<

En—z %'{X\—-Q)x,
Eﬂ*;l \ﬁ,(A—a)y(A——‘B)“,
and B A=A —BP (...

On the ophép "hand, Some parts of the literature are hard to follow

because the Buthor ie so familiar with the above facts that he never
states them explicitly,

_ S.Q\ far we have been concerned ounly with classical
:P{‘n’(?mcaal forms but, in view of Theorem 11, the results can be
yearried over at once to any square matrix 4.

_THEOREM 16. Let 4 pe 4 square matriz and let the elementary

divisors of \I— 4 e

0 QA—a)m, g,
A=), (A—Byws,

T K<y

T LY K s (5)
i (A—gr A—mn)e,
T In fact, some +

B reatments of the mattey define the Segre characteristic bY
the indicss tha veour in the slementary divigors, =
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Then the classical canonical form of A is

[(2y 9 o) @ ya ) nrs ] (6)

Converselyy, when the classical canonical form of A s given
by (6), the elementary divisors of AI—A4 are given by (5).

Nore, There may be no factor A—e with more than one elementary

divisor, when the terms (i} will be abgent from (5) and the terms in

. parentheses absent from (8): there may be no factor A— £ with only,

_one elementary divisor, when the terms (ii) will be absent from (5)\
and the terms r &... absent from (6).

Proor. Let € be the classical canonical form of A. Then C
is a transform of A; that is, there is a matrix T o swhich
¢ = TAT-!. Hence, by Theorem 11, Al—( h,ag the same
elementary divisors as Al —A.

Now let A7—A have the elementary d{v:lsors (5). Then
Al—C has the same elementary d1v1so\1;s and, by § 8.5, C has
the Segre characteristic (6). ')

Conversely, when C is given by (8); “the elementary divisors
of AT—C are, by § 8.5, given hyy (a) Hence, by Theorem 11,

the elementary divisors of A% A are also given by (3).

CoroLLARY. A_necessary\and sufficient condition that ¢ matriz
A have a tmnsformgﬁ@ééh is purely diagonal is that all the
elementary divisorsof \I—A be linear.

Proor. Le%ﬁlfe"divisors be all linear, say

\“ :)l—'-C\’l, A""B: ‘)"_y! suey ) (T) ’
where‘a?\ﬁ 7,... are not necessarily all different. The classical
formt\C' must then be composed entirely of Cy’s: for if it con-
%Qmed C,(A), where & > 1, there would be an elementary divisor
A=A with & > 1.

Conversely, when the classical form C is purely diagonal, it is

diag{Cy(a), Cy(B)yws-s

where «, f,... are not necessarily all different. The elementary
divisors are then given, from § 8.5, by

A_‘x’ )‘_B’ A"_'}'}
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ExampLE. Take the simple matrix € = diag(x, o, n). The
H.C.F. of minors of AI—C of orders one, two, three is A—q,
(A~—a)?, (A—a)® respectively. In the notation of § 8.1,

D= A-a, D= (—aP, D= (Ao,
and each of the invariant factors
BE=D, E= o/ Dy, By = DyfD, .
N
is equal to A—a, A

(NN

9. A short proof 'of Theorem 14 O ”

Let 4 be a given square matrix and let t{e elementary
divisors of Af— 4 be {

K
Q) A—a, Q—an, .. (rpin < ..,
A=Bre, (=B, . (X vy < o,

M 0= A—mr, 20
it being understood that divisom of type (i) or of type (ii) may
not occur for a particular A 2
Wnte down the matrixyy

U= dl&g{o @), 0, (), s O (B, ey GD), -}
By the ea,lculatloug)f § 8, the elementary divisors of AT —( are

precisely those,of AT—A. Hence, by Theorem 11, € is a trans-
form of 4 a.nd ~/

eveng Square matriz A has o transform of the type C.
10. ,@e rattonal canonical form of a matrix

ul\O L. Preliminary lemma
~ ,} LEMMA, When

-3

% fAy=X4p X1y 4p,
0o 1 0 . .0
0 0 1 . .0
end  P=1| . . . 1
0 0 0 .o 1
P TPy P . —b

the value of the determinant of the matriz Al — P is given by
M—P| = fa); ()
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moreover, the H.C.F. of minors of A ~ P-having r—1 rows or
less is unity.

ProoF. Y1 0 0
f0 A —1 . . @
—P| = . (2)
0 0 0 . . ~1
Pr Prq Pra - - AEp

Now neither the value of (2) nor the H.C.F.’s of minors Of,
various orders is changed when its first ¢olumn is replaced\by

col. 14-A(col. 2)+A%(col. 8}--...

<

.\\’.

Q&

When this is done the new first column consmts o{r—l ZBeros .

followed by f(A). -It follows that
APl = (174401 ). (3)
Moreover, the minor got by deleting the_ “$rst column and last

row is equal to (—1)"-1, and so the H C F. of minors having
r—1 rows is unity. )

‘. A
"

Dermverrox 14%, We say ﬂm& P is the MATRIX ASSOCIATED
WITH THE POLYNOMIAY, f ()\)\\
' A\

10.2. Let 4 be a sqx@t-re matrix of order n with elements in
a field F. Let the ipvariant factors of Af—A4 be
El()f) oy BN, e BN

and let E (?\)fbe “the first of these to differ from unity. Let Z
be the m&ﬁv‘x associated with Ey(}) for ¢ = s,..., n and let

~\” ¢ E= d.l&g{Es, Es-{—la - 'n,} (4)
We shall show that % is & transform of A by showing that

MZE and \[—A have the same invariant factors (Theorem :

11).
The first point is to show that & is of order ». By Theorem

7o A—A] = BA) .. ). (5)

The product on the right-hand side must be of degree n and .

T We introduce the definition solely for econvenience of diction in $he next
few sub-sectiong,

5 .
16 o
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80 the sum of the number of rows in Ky K .., E, of @i -

algo =z, for the number of rows in £, ix the degree of E;(A).
From the definition of & in (4),

MN—E — diogAl— K. .\ L), (6)

it being understood that the I's are unit matrices of appropriate
orders, not necessarily all the same. Again, by (3),

A —E,| = K, &)
and the produet of the determinants D)

W—E|.M~F,| is BM.EN. (VO (g

Consider {6) with the submatrices set. out. in [ ujﬁ\lét the result

of deleting one row and one column of elemgnts be a minor X,

say. If a non-zero miner is to result, the rbw and column must

come from one and the same subnmtrjx\t‘fheorem 13). If they
come from Al —F,, the value of X i N

B0)... B, WM, (9

where M, is a minor of AITEJ;:“By § 10.1, the H.C.F. of the
M, is 1 and so the H.O.Fyof (9) is

{EBfA)... B ().

-That is, when we deléte a row and column from Al —E, the
H.CP. of resulting minors of (6) loses the factor E,(A) from the

product (8). .When we delete a row and column from A —E;,

the H.C.Fy of resulting minors of (8) loses the factor Fy{}) from
. the pl‘gd}uct {8). But E,()\) is a factor} of E,(A) and no BN
loss <l he heavier than E,(A). Hence the H.C.F. of minors
"g\(’aﬁ?by deleting one row and one column from A/ — E is
QY . BN LB, ). (10)
On ddf«‘ting two rows and two columns from \/—E we get
the h-eamest loss of factors from (8) when we lose E,(A) by 8
) deletion from A7 —F, and lose E,_,(\) by a deletion from
: }'_I —E, 1. The H.C.F_. of (n—2)-rowed minors of (6) is

EE(A) E’n—z()‘}; .
fn—3,..., s rows. By taking one 1%
T This & & basio Property of the invariant factors: of. Theorsm 4s

and go on for minors ¢



COLLINEATION 83

and one column from each of the submatrices in {8) we can
obtain a minor of AJ—FE whose value is --1: the H.C.F. of
minors of Al —F with less than s rows is therefore unity.

Thus the H.C.F.’s of minors of various orders of (6) are

1, 1: wers ]-a ER(A)’ .5‘()[) +1()‘) e

: ES(A)Esi—l(A)'" n(}‘}s
and so the invariant factors of (6) are B \\‘
1, 1, .., 1, BN, E.,H), ... E(A) <:;.

Hence AJ—E has the same invariant factors as AJ—A4 and
so, by Theorem 11, ¥ is a transform of 4. Mo w;r, the
coefficients of the E;(A} lie in the ficld F, so that the) olements
_ \3

of £ also lie in F. To sum up: D

TaeorEM 17. When the invariant factors q&)&l — A, other than -
unily, are BN, B0, . \E (A)
the matrix B = dl&g{ s+1~a n}

where M, is the malriz assocmted wztﬁ the polynomial Ei2), is
c-equivalent fo AT N

Moreover, when the elements of A lic in a given field F the
elements of E also lie in F: \

This matrix & is son&etlmes called the RATIONAL CANONICAL
PoRM of A : the tefnd rational is used because the caleulations
are (theoreticallynit least) possible within the confines of a given
field. The inx{%I%ant factors can be determined by H.C.F. pro-
cesses a-ngéi*ﬁhout finding the roots of the equation Al —4]| = 0.

p

11. 'Rhe minimum function of a matrixj
“I:1. We noted in Chapter 1, § 11, that when 4 is a square
matrix and )

AL —A[ = fQ) = Xy X (1)
thenalso  f(4) = A*4p A"ttt p, L = 0. (2)
For any integer % there either is or is not a polynomial
g) = Mg Vet gy

t We have changed the notation for the associated matrix from Z, to M,
§ For an alternative treatment, see Chapter VIL, § 1.
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for which g(d) = 0. Let m be the least value of k for which
there is such a polynomial: the equation (2) shows that this
is an effective definition of m and, in fact, that m < n. More-
over there is only one polynomial
BA) = X h Amtqe A

of degree m, for which h{4) = 0. For, if there were two such,
say By(A) and A,(}), the polynomial %, (A)—h,(A) would \be of
degree m—1 at most and A,(A4)—h,(A) would be zeré, \These

facts justify the following definition

DerINtTION 15. The polynomial of lowest dgg{i{é&.
R{A) = M 4-h, G S
Jor which h(A) = 0 ds called the MINIMUM FUNCTION (or fhe
REDUCED CHARACTERISTIC FUNCTIon)@ffke matrix A.
11.2. An algebraical detail =~ o

L
Before going on we disposeof & detail that occurs in later.
proofs. N\ :

P = e s ) = fybfid s
Ay = gpfig&lh+..., A} = ro+r A,
be polynomialsiéns or more of which may be constants, that
satisfy an identity

ST 9 =) +r(h), 3.
Then,ﬂop;éi;uating coefficients in (3),

’§w: o = foGo+,, th = fod1 +f19+715

”\etf: Hence, when 4 is any square matrix,

O'\'

O g(4) = f(A)g(4)+-r(4). @

11.3. TuroREM 18, Lef B(QA) be the minimum function of a
square malriz A and let g(A) be o polynomial in . Then a neces

sary and sufficient condition, for g(4) to be zero is that g(A) should
contain h(A) as a factor,

 Proor. (i) Let 9A) = R(N)g(n),

whe}"e ¢(N) i a polynomial, possibly a constant (not zero). Then
g(4) = h{A)g(A).
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But, by definition, k{4} is the null matrix and therefore g(4)
i the null matrix.
(i) Let gld) = 0.
By the definition of A(A), the degree of g{A) is not less than the
degree of A(A) and
EITHER ¢(A) contains A(\) as a factor, and the theorem is

thereby proved, N
OR there are polynomials g(A) and r(A) for which "~
| g) = BAGRA)+r(N) D
and the degree of (A} is less than that of h{?«)
In the latter event, \\ )

) = )by S
and, since g{d} = h{4) = 0, r(4) = 0. But this\g glves & contra-
diction, since #{4) 3£ 0, the polynomial/ fi}t} heing of lower
degree than A(A). Hence the second a}iaematwe cannot arise.

11.4. The matriz associated wzth an mwmnt SJactor

Consider the maftrix N
0 1 v:Q v 0 . ¢
0 o 1 . . 0
P= N
04{o o . . 1
" Pre1 TP - —H

associated with, the function
D7 ) =Xt

Aawes\m§ 10.1,

and"\smce any matrix satlsﬁes its own charaecteristic equation,

\V | p(P) = 0. (5)
But, as a little caloulation shows, the first row of each of the

matrices : L, P, P pr1

consists of n—1 zeros and one unity, the element 1 appearing

in the first place in I, in the second place in P,..., in the last

place in Pr-t, Hence the matrix

oL 4-a; P4ay P ta, P2 -~ (6)

aaay
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1

has for its first row

@y O Uy ..t
Accordingly (8) can be the null matrix ouly if all the a; are
zero, We have thus proved that the matrix 7’ cannot satisfy
an equation of degree less than », that is, 2(A) iy the minimum
function of P, ' .

Now let 4 be a square matrix of order », let £3(A) be anins
variant factor of \I—A, and let M, be the mairc associated with
E{A). Then, by what we have just proved for the lﬁa;rif P,
Ei(A) is the minimum function of M, and, by Thedrem 18, a
necessary and sufficient condition that f(3)) bc.bhfe\ntlll matrix
is that f(A) contain E,(}) as a factor. )

11.5. 4 general theorem \)
AN .
TrROREM 19. Let A be @ square m{zt-{ia&'of order n and let the .
invariant factors of AI—A be E,(A\PNESA),..., B, (). Then the
minimum function of the matric ANs E,(A) and g(Ad) = 0 if and
only if g\) contains B,(A) as ¢ factor.
Proor. By
for which

X 3

Theorem .I'?;‘:ﬁ'here is a non-singular matrix T

AN '\
TA Ttl'%fw = diag{M,, M, _,,..., M}
Moreover, if gia) }qe any polynomial in A,

AEY = diaglg(M,), g(M,,y),..., g(M,)}

rad oy 9(4) = T-g(B)T. |
E Thus\i?'(;‘l) is the null matrix if and only if each of the sub-

'. m&t{u}ses 9(,),..., g(M,) is & null matrix, By § 11.4, this issoif -
. aadouly if g(d) contains each of E()),..., E(X) as a factor.
\ pecordingly, since ,((),..., E,_,(\) are factors of 2, (1), a neces-
_ Sary and sufficient condition for g(4) to be the null matrix is
that g(A) contain E,(2) as a factor, which proves the theorem.

N



CHAPTLR V

INFINITE SERIES AND FUNCTIONS
OF MATRICES

In this chapter all numbers belong to the field of complex
nambers. When occasion warrants, we refer to any such num-
her as & SCALAR; we refer to ~

T (IR
where the constants a, and the varlable a are complex numd)ers
(including real numbers as a particular case), as a SbALAR
POWER SERIES, N

A&
“We shall be concerned with serios of the type \’\\

ayf+a, A+a, A2--... A\ (2)
wherein 4 is a square matrix whose elemeq’bs« are scalars. We
refer to such a series as a MATRIX POWER\SERIES

1. A convergent sequence of matnces

The natural way of attachmgxa meaning to the notation
(2) is to follow the procedure oﬁe’le}nenta:ry convergence theory.
Let By, By w By o 3)
be a given sequence qﬁ\'r;}at-rices each B, having m rows and

# columns. Let N\ brgin

be the element m the rth row and sth column of By. W’hen
there is a mat::g;c "B, with elements b,,, such that, for every r

and 8, z»\:{. b,.s - o b-rs as N — o,

we write; By+B as N-o0.
We then say that B, converges to B ag N tends to infinity
@d tefor to (3) as a convergent sequence.

In fact, without elaboration of detail, we carry over to .
Matrices the terminology of elementary convergence theory. For
example, when A4,, 4,,... are square matrices of the same order,

8, = A4, +4,+...+4,,
and 8, - § as n — o0, we write

S""ZEAH

'n,-=1
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Or again, just as we write

S(x) == Ellﬂn {I‘)

-
when the terms of the series are functions of a scalar

variahle
x, 80 we shall write

S(4) mn;?;lu“(A)

. . . o N\
when the terms of the series are functions of a matrix vasiable
A TIn particular, when the scalar power series O

No/ 3

Nl P

2 C
Sty T--ay - \

is the expansion of some function Sy in t.he’:[&};hbourhood of
the origin, we use f(4) to denote the sum of the matrix power

series o
tota, A+a, A2 |- a)
$
We go on to consider the conyergénee of such series. The

next two sections (§ 2 and 3) arg’hy way of preliminary to our
main problem; some of the details are of interest in their own -

 right.

. S 3
o

2. The auxiliary unit\iﬁétrix -
2.1. Let U be @..fgﬁtrix having unity in each place of the

. superdiagonal ad zero in all other places: for example, when

N \ - Suppose 4 is the matrix

2
"4

dealing with @arices of order three,
P\% 0 1 0
SO U=1|o o 1].
O
,\\u O 0 0

}I’Qﬁhe sequel we suppose U to have r rows and colums.

T QG . . ay,
%1 agz . . Gzr
a’rl afg . . a..

B21 Gy . . ay

Then U4 =

afl arz - . a’rf
o o . . 90
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which we get'ﬁ‘om 4 by removing its first row, moving the
other rows up one, and filling in the last row by zeros. In

partic’ul&r, o 01 . . 0
=10 0 0 . . 1

o 0 0 . . 0 .
o ¢ 0 . . 0

has its 1's 5wo places to the right of the diagonal, U3 its 1%\
three places to the right of the diagoval, and so on. (The
sequence effectively-ends with Ur-1, which has a smgleil‘ in the
top right position; U” has zeros everywhere.

Thus the ranks of U, TU2,..., U™ are r—1, f—\}, 1; and
U7 is the null matrix. Further, N x\‘
U =0 (p= 0). ’
2.2. Classical submatrices \ g
We recall the definition of C{A) '&Qﬂl Chapter IV, § 5, and

note that ) = PJ+U

By what we have just shownm§ 2.1, the mairix
{C. (X}-Q)J W= Uk

ig of rank r—k when, 1\\< L < # and is the null matrix when .

= ¢ \\

3. Collineation  and convergence
3.1. THEOREM 20. Let f,(x) be a given sequence of scalar
pOlynomqus\and let the matrices A and C be transforms, with
P-1, Then the convergence of the sequence of mairices
fn(Al}o a limit matriz f{A) implies the convergence of the sequence
Of mamces F.(O) to a limit matriz f(C) given by
\V F(O) = TRATL.
Proor. Denote a matrix by the element in its ith row and
Jth column and let i
= [ty], fuld) =[o), T =[04
Then, since C="T4T
and f, () is 2 polynomial (cf. Chap. IV, § 3),
1a(0) = THA)T
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Hence - (€)= [taalp 6,1, (1)
where the repeated suffixes I, imply the use of the summation _
convention.

Now suppose that the sequence f,(4) converges to a limit

matrix f(4); that is to say, for every I and 4 there is an g,
such that

aff > ay, ('2\)
N\
-and f(4) denotes the matrix [a;;]. Then, Ly (2, A »
Ly @i s — £y, 65 x:‘: §
and, from (1), £l C) > TR AT, O (3)
This proves the theorem. T\

CoroLLaRY 1. If ¢ () is tself a limitnpf }éolynm.iazs m
and $(4) > $4), then ,(C) > a limit GO given by
$(C) = THATH.

COROLLARY 2. A mecessary and sufficient condition for the
convergence of o sequence of polymomial forms

) . fl(A)} '.fK(:‘i:): LLEF fn(A)!

._z'fs that, for some tmnsfo@ C of 4, ihe sequence
-}fl’(C\)’“ fz(C)’ ALY ] fn(C)s

should com-e-rge;iw‘

A\ S/
- Forif Q.iéatra,nsform of 4, 4 is a transform of ¢ ; in symbols,
= A:gi‘l implies A= T—]_O( T—l)—l'

Q«Z\\In the applications of this theorem, the particular trans-
torm of 4 considered is ugu

ally the clagsical canonical form of
<ﬁ: As we shall see, this enables us to reduce the problem of

4
- tonvergence of sequences of matrices to that of the convergence
of sequences of scafars,

4. Diagonai matrices

Before Gdnsideﬁng our main theorem, we note a property
of diagonal matrices o

which our proof of that theorem will
depend. :

LEt‘ B = dia’g{Bla BB:---s Bm}’
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where each B, is a square matrix. Then,} for any polynomial
form fy{z), :
fN(-B) == dla‘g{fl\{Bl) fN(Bz)s :fN{Bm)}

The sequence f»(B) will converge to a limit f(B) if, and only if,

for r = 1, 2,..., m, Fu(B,) —alimit f(B,).

5. The convergence of a matrix power series )
5.1, Taroreym 21. Lef the classical canonical form of o mtria-\\\
A be = dia'g{cp(hl)’oq()‘z)a‘"}' : ,f'(l)
Then it is sufficient for the convergence of the matrix pqy{e}“s]eries
140, 0403 O .., 7 (@)
and so (by Theorem 20) of the mairix power seried)
ay I+ay Ay AP A o @®
that oll the latent roots A of the matriz A\h‘e within the circle of
convergence of the scalar power sertes Q \Y .
gy x—}—az a:Mz— ' {4)
Proor. Let '
J(0) = %I"]l‘“IU“i" a4 O
Then, by (1) and § 4, \\ '
Inl0) = &ag[f}\{()' A} SC, (Aa)}' 1
Accordingly, we donsider the sequence JofCL(A)} where Ch(A)is
a typical suhr\n&%nx in (1). By§2.2,
0T G = KT e
where Land U are the unit and auxiliary unit matrices of
order Vi
‘NW fxl@) being a po}ynomml in 2 of degree N—1, Taylor 8

\expansmn _
: -1
FS0+0) = I O)-+afi ot gy 00

is anidentity in «. This establishes the matrix identity

WAL+ T) = IfyQ)+ Uy W)+t 1),f§\£ B

+ Cf. Chap. I, § 12 (b}, equation (13).
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But U*, Uk, are all null matrices and so, when N = [,

S} = L)+ U)o ). (8)

(k 1)‘
Now let A lie within the circle of convergence of
fizy = Z @, 2™,

Then, as N » oo, fy(A), fx(A),..., FED(A) tend to the limits f Q\)\’,\
F A, fEDA). Hence ¢

G} > If )+ TF N+, + _pu-a (A) = ;JP‘),

1)"
say. Remembering the results of § 2.1, we see. f.b};a
O PO FNRE L R -1
By=| 0 O o . gEENE- g
o 0 0 \ O

Accordingly, when all the laten‘t roots of ' lie within the
cirele of convergence of f(z)t

HO) = tim f ON™
= im diggl{Cy ()}, £4{C, 001
= dag(F,(\,), F(dy),...}. (8)
52. 4 comlicm*y By using known results in the theory of

scalar PUWQI‘ series we can refine the result enunciated in

Theore\@ﬁl A necessary and sufficient condition for the con-
vergefn'(} of the series
~"\. ’ Gt x+a a4,

\and of the series obtained by differentiating its terms once,

twice,..., k—1 times is that the lagt of these series Should
converge

Accordingly, o necessary and sufficient condition for the series
ot+a, O+a, 24
to converge to the sum (8), is that each of the series

f(p—l)(}ll), f(q—i)()(z),
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should converge;T for this condition ensures that, in (6), fy(A},
fiA),... will converge to f(A), f'(A}),... as N >0, so that the
condition is sufficient for the convergence of > a, C*; while if
we know that Y a, C* is convergent, each fy{Cy(X)} must con-
verge and so, again from (6), the series f(A), f'(A),..., fEH(QA)
must converge.

5.3. An extension of theorem 21

- ‘O
When ) = 3 ai—ap A
Promt| R A
and f(G) = 3 a,(C—al)m,
. . n=0 \ 3
we still have, as in § 5. \’\\

fN(A1+U)—Ifa(A)+Uf'N(>«)+ +(k 1){ 0

and fi{Cd{N)} — Fi(A), where F(A) is deﬁﬁed asin§ 5.1. In fa,ct
the argument of § 5.1, 5.2 is una,lt.g&'}d save in minor details
when ¢—« replaces @: the conclua;ons are the same for power
series in ¥ —« as they are for pawe‘r series in .
6. Matrix power series Q}i}’)ressed as polynomials
6.1. Let 4 be a gwe}} gquare matrix and let the equation
of lowest degree safisfied by A be
H(A) Anrth,An 4 b, I = 0. (1)
Then we ma,xuse (1) to express A+ in the form
A\m*é — gy APy, Ao, T (s 2 0),
ea,ch bemg a function of the ’s. If now we substitute these
eX.p‘seSmons for Am, Am+1 ., in a convergent power series

\/ g -ty A+, AT, {2)
and collect like powers of 4, we replace (2) by
go I+g, At oot grp g A (3)
where

g, = @+ Z m+s Fm-r,8°

T ‘”"‘1{)1} denotes the series obtained hy differentiating o+ A-+as A+,
term-by-term p—1 times.
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Such a process does not, of itself, prove that the series for
g, converge and the caleulation of the «, is too complicated to
be profitable. The process does, however, indicate the possi-
bility of expressing the infinite series (2) as a finite power serieg
{3). 'We make a fresh start on this problem in § 6.2.

6.2, Let the characteristic equation of 4, namely
- M —A] =0, QO
have & distinet roots a, B...., «, possibly repeated. Then ,these
are also the roots of H{(A) = 0, where
HQ) = Xnhy Am ity ,Q% 0N
is the minimum funetion} of A4; some of the roé{cs\are, neces-

sarily, repeated roots when & < m.

~ The faet that «, 8§,..., « are the roots of @[)ﬁ) = 0 enables us
0 prove the result indicated in § 6.1. ,: v
' THEOB.EM 22. A convergent mamxipower series

Jid) = a, I“i‘“yﬂ-ﬁ““z A
. can be expressed as @ ;polynongil in A.
When the minimaum functwn H(}) is of degree m and has m dis-
tinet zeros o, B, v K, thw pq\bynomml 8

E}UM@?’“—“) )

(o—x)

When HYRis ropeated zeros, this polynomial has a form
derived f; mm}‘é ) by o limiting process.

Pro @\ Suppose first that the equation
8 HO =k,
\has m distinct roots «, B,..., «.

Let fy(2) denote the sum of the first N terms of the scalar
. power series

ao—[—alx-i—az e
Then, fy(z) bemg a polynomial, there is a unique polynomial
r(x), of degree m—1 or less, and a polynomial ¢(zx) such that
Il2) = g@H (@) +r(z). @
‘}' Cf. Chap. IV, § 1% Tt is sufficient hae to note that in many examples

H(A} = [AT—A4| and thet in all examples H{A) = E,()), the last invariand
factor of AT— A (see p. 86), which conbaing (A—o)...{A—x} 8s & factor.
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NOW.H(QB') is zero when « = a,..., x and so
) = fyla), s 1{x) = fy(x}). {7)
When we write the polynomial »(x} in the formf
r{x) = vty et Fr, el

the equations (7) provide m linear equations in ¢, #,,..., 7, of

the type rotry ot ot g ot = frla). (8). Q
FPurther, the scalar identity (6) establishes the matrix 1dent1ty o
Iu(d) = gUA)H(A)+r(4), N
and so, since H(4) = 0, AT
AN

Rt At A7 = fld). (DT ®)
On eliminating] rq...., #,,_, from (9) and the m eq‘uatlons (8),

1 o . . o™l fule) e\
Rl O

L. . = 0. (10)
1 =« . . Kml fN(x)

1 4 . . Am1 M(4)

We know (from § 5} that f,,\f{:a; oy J() = fle),s, flx), pro-
vided that fy{d) —a finitef(d) a8 N - co. On making N tend
to infinity in (10), we obtain

o=t fla)
gt (B
.o =0, (11)
kML f{K}
An-t f(4)

pmwded\mﬂy that the series
~O fl4) = agta, A-ta, A2+...

It cﬂnvergent
The form (5) given in the enunciation of our theorem follows

when we expand the determinant in (11) by its last column.

t The coefficients dopend on N, but we prefer to avaid the double suffix
notation that would be required tn give an explicit expression to thiz
dependenco,

I The matrix equation (9) is a conspectus of n® scalar equations equating
individual elements of 7{4) to the corresponding individual elements of fx(4);
the ‘eliminant’ {10} is a conspectus of the n® ‘eliminants’ obfained from com-
bining each of the original n? sealar equations with the equations (8).



E

96

;

INFINITE SERIES AND

In detail, on using {(abc...jk) to denote the prod
differences

(@—b)...(a—k)b—c}...(b—k)...(j—Ek}
and, when 4 is a matrix, {{Abc... k) to denote

(A—bI) .. (A—ED)(b—c) ... (b—F) ... (j—E),

‘the expansion is

"™\
T . yB) ~f B (A e yo) oo (— DAY x\>ﬁ
Thus the equation (11) gwes 3
_ m-1 C(AK ?B) m ‘.T(AK (A« ... ya)
fd) = (1) Jo) Sy H =) f@ gv
z(Ax vﬁ) gA« w;)
= ) L +IE) C(ﬁ e

6.21. When H{A) = 0 has re@a&ted roots, say « is a
root, we regard 4 as the li;(lt/ when % — 0, of a mat
whose minimum function has zeros

a—|—2h % og—Fh o, B, v,
The correspondmg ﬁn:m of (10) is
A (x2R)m1 fyla2R)
L Byt o)
1. N« a1 fN(R) =0,
s P Ax
e R Ap- ff?iﬁ
. ~\\ When ${x) is & polynomial and & — 0,
AN ) 2R (), $lw+h)—(x)
\”\, — i), BT

~ and 8o the limiting form of (12}, after the appropriate man
tions of the first three rows of the determinant, is

0
0

{1

1

1

¢
1

o

K

4

(m—1)(m—2)am-3
(m—1)am-2

a1

=1

Am-1

f N(G‘)
Ja(e)
Jarlo)

Sa(x)
Ju(4)




FUNCTIONS OF MATRICES 97

We are here supposing that the nth invariant factor of 4 is
B,(0) = (—P(A—B) .. —x);
the canonical form of 4 can, accordingly, contain only
01(0"}: 02(0‘): 03(05)3 Ol(ﬁ): reey OJ[K)

and must contain a Cy(x) because (A—a)® is an elementary

- divisor [ef. Chap. IV, §§ 8.5, 8.6; pp. 78, 8]. Hence [cf. Chap.
V, §5.2; p. 92] the sequences fr{a), fala), fulad..., fylx) tendis

“to finite limits f(a), f'(«), f(@),-.., f{x) provided that the ma:brlx,

" sequence fy(4) is convergent. This establishes the thedrem -
when the roots of H{A\} = 0 are o, a, a, ..., « and othér ex-
amples of repeated roots can be dealt with in the sainé way.

Alternatively, when H(A) has (A—o)® as a fa{}%r, (6) gives
r'{) = fx(e), 7"(@) = fi(x), and the above linjit processes can
be avoided. D

6.3. The form (5) was noted by Syl}*ééter and s sometimes
called Sylvester’s interpelation fgﬁpula,"r by analogy with
Lagrange’s interpolation formulag '

7. Abel’s theorem for -mati'ji"x‘power series .

We shall not attemptthe systematic development of a full

- convergence theory fof éries of matrices, sinee many of its
*details could only he’\%arisome elaborations of the correspond-
ing resulfs for sgari&ai of scalars. As an example of one type of
result we notef :.\ ’ :

' THEOBiﬁ;%. Let f(A) denote the' sum of the convergent matrie
power g T+, Aty A2+ ... (1)
Thém the series g I -Fa, 14 Fay AR+ _
s éonvergent when 0 < § < 1 and tts swm tends to f(A) whent —~ 1.
Proor. Let the clement in the rth row and sth column of A%
be o®, Then © :
S a; A*
k=0
is the matrix [ i @y a;’;)], (2)
5=0 :

¥ Cf. Tambull and Aitken, Cancnical Mairices (Blackie, 1932), pp. 73-8,

where an alternative treatment of Theorem 22 is given.
BaT6 : .
H
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In detail, on using {(abc...jk) to denote the product of
differences

(a—b)... @—k)b—0) ... =) .. (j—F)
and, when 4 is a matrix, {(Abe... k) to denote A
(A—bI) o (A—BIYb—) o (BB} .. (—hi,
the expansion is N ~D
Fla) (A .. yB)—f(B)(Are ... ya) ... - (— LIAF(A ) (x ... Bev).
Thus the equation (11) gives o4 » 2

7

. "N
1z Sk vB) L{Ax...yx)
A) = (1) 220 SR ] .
fd) = (—1y*f(«) £ o) +\( L™f(8) z(x...yﬁa)+

= fla E;("‘1“’*""'}’18)_ .Z(’AK...'){&)
I G A

6.21. When H(A) = Q‘}Ia; repeated roots, say « is & triple
root, we regard 4 a,{a,’the limit, when A -+ 0, of a matrix 4,
whose minimum fudgtion has zeros

H\a;\-l-Qk, ath, o B v
The corregponding form of {10} is
Wb 2h . L (wb2hmt fy(a-2R)

SPY b ekt fyladtR)

K7\ 1 = . a1 Ml =0 (12
A e L ed T e
=\ I 4, . . A1 faldy)

When () is & polynomial and k — 0,
$(z+2h)— 24(w4-h)1-(x)
h2

s ¢e),  PEINAO, g

a'nd 80 the limiting form of (12), after the appropriate manipula-
tions of the first three rows of the determinant, is

0 0 L L m—1)pn—2)m-®  fa)

01 . . (m—1ymt Jrole)
1_ ® - ol @) | =0,
Towe o L Julx)

1 4 . . Am-1 L fld)
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We are here supposing that the nth invariant factor of 4 is
) = (/\—cc)a(k——ﬁ) s (A—x);
the canonical form of 4 can, accordingly, contain only
Cile),  Cyla),  Cyla), Cy{B), ... Cyx)
and must contain a C{z) because (A—a)? is an elementary
divisor [ef. Chap. 1V, §§ 8.5, 8.6; pp. 78, 9]. Hence [ef. Chap.
V, §5.2; p. 92] the sequences fy(«), fala), fyla)..., fulx) tend '\
to finite limits f*(a}, f'{«), f(a},..., f(x) provided that the matrixy,
sequence fu(A) is convergent. This establishes the them';am
when the roots of H(A) = 0 are a, «, «, f,..., « and other ex-
amples of repeated roots can be dealt with in the sp,@way.

Alternatively, when H{}) has (A—a)® as a faetor, (6) gives
(e} = fyla), (o) = fx{a}, and the above limif\processes can
be avoided. 4 e\

6.3. The form (5) was noted by Sylvester and is sometimes
called Sylvester's interpolation fom'(glé.;'[‘ by analogy with
Lagrange’s interpolation formula...,”{& ’

7. Abel’s theorem for matgiX ‘power series

We shall not attempt tghe'é.ystema,tic development of a full
convergence theory for..ée;}ies of matrices, since many of its
“details could only be:“ié‘afisome elaborations of the correspond-
ing results for scriés, of scalars, As an example of one type of
result we notes,

THEORE]\E ‘33“ Let F( A} denote the sum of the convergent mairiz
power 7 ap [-+ag A+ay d2+.... (1)
Tkggf{?i-} series agd+a;tAta 242+ ..
i9dorvergent when 0 << t < 1 and its sum tends to f{4) whent > 1.

Proor. Let the element in the rth row and sth column of 4%
be olk!, Then

is the matrix [ i ay, a?;)], (2)

1 Cf. Turnbull and Aitken, Cunonical Mafrices (Blackie, 1932), pp. 73-8,

"hfm.l‘é an aiternative treatment of Theorem 22 is given.
H
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the series being convergent by hypothesiy.
When 0 << < 1, @
Z y, Ak
k==

[ 3 axtrott] ®)

and the limit of this matrix as £--1 is, by Abel's theorem’r
applied to the series of scalars that form the elements of (%
the matrix (2). This proves the theorem,

is the matrix

8. Functions of a2 matrix
8.1, Definition via power series \\ ;
Let f(z) denote the sum of the power series \‘
O

=0 § \ ’
and let the series converge when {z] Y ‘_h’ Let A be a matrix

whose latent roots lie within the eix cl‘e\]zi = R; let the classical
canonical form of 4 be 0N

= dlag{GR(}. Co(As),nn}

and z{\: TCT-
Then, by p. 92 (8), ‘che\ matrix power series
O\
JL: Z a, &7

converges to\the sum (') given b}
§ F(C) = diag{F,(\,), F,(Ag),...),

where {
PR oY fm)f%Mﬂ!. - JEDQ/E-)!
OBw={ 0 10 S0 )
0 0 0 .o f(h)
Further, by Theorem 20, the matrix power series
S a4
r=9

eonverges and, if its sum is denoted by fid)
fldy = TroyT-.
T W. L. Forrar, 4 Text-book of Convergence (Oxford, 1938), p. 79.
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These facts define the function f(4) of a matrix 4 when the
latent roots of A lie within the circle of convergence of f(z).
We leave aside the refinements of § 5.2 that may, in particular
examples, enable us to define f(4) even when some of the latent
roots of A lie on the circle of convergence of f(z),

8.2. Definition via the functional form

When a latent root of A lies outside the eirele of convergence\\\
the method of § 8.1 ceases fo be applicable. Suppose now that
F(z) iz a function of the complex variable z which is ama,iytlc'
in the neighbourhood of z = 0. ¥or sufficiently aiI. values
of |z| the function F(z) can be represented by the {ﬁﬁl f{z) Bay,
of & convergent power series

Sar. (27
e
We distinguish between the funct1qn l\-(z) and the sum f(z) of
the power series.
Let the power series convegg,e when |2] << B. Then

F(z) :f(:Q\ when 2| < R, (1)
Now let C be & cargﬁ;i«bal form given hy _
O diag{C, (A1), CylAo)s--ts (2)

where no lat, t root A of € is a singular point of F(z). When
[#] i8 su m;ft]y small, the latent roots £, #A,,... of the matrix
¢C all s vy the condition JA[ < R and the points A,, Agseee
W1th1\,ﬁ ‘the circle of convergence, [z| = E, of

Vo Fltz) = plt,2) = zartfzf. (3)
Henece > a, T | (4)

is convergent and its sum ig,1 by § 8.1,

diag{F,(t, A;), F{t, Ao)yeerts (5)

t 2 g0y = 3t = i) = )



100 INFINITE SERIES AND

where a typical F{t,A) is given by

FieAy Py . . EETFE=DAY (ke — 1))
SRk =2 )N e
R = O e
0 0o . . F(1A)
Define F(tC) to be 3 a,£C". :
Now in (8) we are concerned with the function F as dj M0

from its series representation and, provided A is not a singular
point of the function, we may put t = 1 (but sce npts. at’ the
end in the above and so obtain a definition of F(CR -~

That is to say, we define A N
F(C) = diag{F, (). F,(0,),.5y> (M
where a typical F}(}) is given by O
FA) FQ) . . FEDR/(k—1)!
0 0 AV FOU

Finally, when 4 is a trag}gférm of Cand 4 = TOT-L, we
define F(4)} by the equation’

£(d) = TR(CyPL. (9)
Noze. StrietlyLih ‘order to define F(C) from (6), we must envisage
& domain D wighin' which F(z) is an analytic funetion of z and the
point £} must-be.fnade to tend to A along a path lying wholly within
D. Tn perpietlar, if F(z) is not 8 single-valued funetion and f(z) is &
power sgMeY representing a particular branch of F(z) near z =&
diffwﬁ‘f}path,q of fA from points within the circlo of convergence of
Jz)to'the point A may provide different valnes of F(A), and so of F(C)-
F or mplﬂs '
~O fle) = 1+a-2z+“—(“—;ﬁ(2z)2+... (Jz] < )
3 1
N\ when a is not an integer, represents a particular branch of {1—22)7*
This funetion has & branch point at z = }; the domain D may be
taken to be any finite part of the z.plane with the point z = § ex-
cluded. If Chas s latenttoot } = 1, the value of the function {I—2C)™
will depend on the paith followed by ¢ as it comes from points within
the circle {t] =  to the point ¢ — 1,

We do not dwell on such points, which belong rather to the theory
of functions of a complex

variable,
t We return to this definition in § 8.6, where we prove that (9) provides &
shique definition of Fi4). ‘
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8.3. A simple example of the definition

For simplicity, take the canonical form € to .be a single
classical form Ci(«), where |o] is unrestricted in value. When
la] << 1, the matrix power series

A+O0+C
is convergent, its sum being denoted by {I—C)-1, and {by
(7) of § 5.1] it is represented in matrix form by "\
1fatoit ... l—|—2a—]—30¢2+...:| ~":(1~:)‘
0 1+ata+... WV
. (1—a)2 (1—&}“2} ’:t\\.». )
ie. [ STl @ e

The series form (1) ceases to be app]icable\when [«] 2 1 but,
provided that « = 1, i.e. provided that o/ not a singularity
of the function (1—z)-1, the functional«férm (2) remains valid
regardless of the value of |oi. \

It is easy to verlfy that when (2} it multlphed by I--0, that

is by 1—qa “_1

o)
the result is I; and, (\) defines (I—C)-1, the reciprocal of
I—C (thero can be only one reciprocal).

8.4, Rational functwns

The con@luhmg remark of § 8.3 raises a general questmn,
having ’vﬁ@“functwns f(z) and A{z) of a scalar varzable z whose
produetv\is g(z), so that

& 2 J@)h(z) = g(z),

X\d having defined the matrix functions f(d), gidy, hA) of
& matrix 4, as in § 8.1 or § 8.2, is it true thatf(A)h(A) = g(4)?
‘We shall show that it is true.

Let f(z), k() be analytic functions of = regular in the neigh-
bourhood of the origin and of each latent root of a classlcal
canonical matrix _
C = diag{C,, (..}, - (3)
and let f()h(z) = g(2). |
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Let €y be a typical submatrix in (3) and let the matrices
J(C), MG, 9(C;) be definedt as in § 8.2. We shall prove that

JICIR(C) «= ¢(Cy). (4)
The left-hand side of (4) is the product of the matrix
fQ) J'@) . SEIRY k1)t
fey=19 SO . fEE) -2y RO
o o L w1

by a corresponding matrix having % instead of ke (. this

product the (n4-1)th element of the first row [ttl’é“order of
1. .. . >

multiplication is £.4] is L&

L Df.Dtg L Npepa-o

(n— It (n— AN

. o €

which, by Leibnitz’s theorem, is equal o
Y -

1
—D°f. Dby

1 ., —a .\.‘.il
ED (f.k)’?;ﬁf) (g).

That is to say, the first row‘@i{:ﬁﬁ;a product is
O\, 1,
g0, GW, S,
T R N i
Similarly, the sqcor}d row of the product is

N7 0, g, .,
and so on forthe other rows. Thus the product of f(C;) and

R(C,) IY@D and the equation (4) is seen to be a deduction
from I@ibnitz’s theorem. Now

o F(O) = ding{f(C,), F(C,),... (6)
Q;id so for £(C) and 9(C). Accordingly$

FOWO) = diag{f(C,)h(C,), FCIRE,), ..}
and this, by (4), gives

FOWC) = diag{g(C,), 9(C,),...} = g(O).

(‘i t '_I‘l}is definition uses the funetiog and includes the infinite series form ?f |
efinition; e.g. to use 14z F2%-+... requires all latent roots of € to He within

[z} = 1, while to uee the function {1—2)1 requires only that no latent roob
be equal te unity,

I We use D% 10 denote FOR). § Cf. Chap. I, § 12 (b)-
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Finally, when 4 = T0OT—* so that {§ 8.2 (9)] f(4) = Tf(CYT,
ete., JA(A} = g(4). - ()
In particular, if A{4) is non-singular,
, Jd) = glA)p(A)
and, when g(z) and A{z) are polynomials, f{4) is a rational
function of 4; the preceding work of this subsection reconciles
the general definition of f(4) given in §8.2 to the more
elementary definition of a rational function of a matrix gived.
in Chapter I, §4(d) — it shows that f(4) defined by meafi\of
{5) is the matrix obtained by multiplying ¢(4} by the regiprocal
of h{4). A\
o
8.5. Fractional powers of matrices (+
. We now show that (7) of § 8.2 serves alsobodefine & matrix
~ whose gth power is equal to a given matpid./ Take first a single
classical submatrix, O3(A) say. Then',\}‘v}jeh m and 7 are positive
integers, the work of § 5.1 shows that"
Am -t (S -2
on_ | 0 X olmam e

0 o0& 0 R
while C* iz obtainetdhby writing » for m. Moreover gmin ig
obtained by writing m—+n for m and, m and » being integers,

\< Om.On = Omin, (1)
But equation (1) is a conspectus of the scalar equations that
equatesgobfficients of powers of A in the individual elements
of thiﬁ\}mduct (™, O™ to the corresponding coefficients in the-
ipdiwidual elements of the matrix C™+*. Considered as equa-
\“\1};[01:18 in the variable m, each of these is of finite degree: when
% is an integer they hold for m = 1, 2, 3,... and are therefore
true for all values of m provided = is an integer. Again, each
equation is of finite degree in n; and,-as we have just seen,
each equation is true for any given m when =1, 2, 3,....
Tt is consequently? an identity in #. Thus the scalar equations

} The argnment is the familiar ‘double induction’ often used to prove the
validity of the binomial series; of. Ferrar, Convergence, p. 95.
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hold for all values of m and =. Consequently, if we define Oz
when x is not an integer by

A A=l la(x—1)Ae-2

T L1
gz— |0 A xAT ’ @
0 0 0 Sk |
which we may do provided we exclude A — 0 when some Z
18 negative, the relation . AN
O OF — (rtu M(‘N“’: (3)
will hold for all values of x and . A\ U
It follows that, when 7 is an integer, x.\'\’f _
' (O = (o N\ (4)

and that an nth root of ¢ is given by taking & = 1/u in (2)

provided that X % 0.4 Thers are, of €owtse, n values of Alie

-and any one of these may be used: LNs an n-valued function

of C. O |
When € is more complex, ijy}j" )

C = diﬂ:g{g};(hl)) Oq()"fl)’ ' "}’
an nth root of € iz givei{b};

JEBICLMM,), CYm(0y),...), (®)

Provided that nQ AMs zero. Tn this expression each submatrix

- 18 capable of p.determinations corresponding to the n different
values of e;:.cl;.\df the functions Afm, A

Nowgs @& is not suggested that this sub-section is anything more
than\ indication of

how matrices X can bo defined so that X* = 0.
It ‘dees not touch on

\ the question ‘What is the most general forma of
,oatrix X for which, say; X? = ¢’

\J 8.6. Note on the definition F(4) = TF(OyT—1
When 4 and € are given matrices so related that we can
determine a matrix 7' for which 4 — TOT-1, this matrix T
cannot be determined uniquely. In fact, when B is any non-
singular matrix that commutes with 4 and we put
K = BT,

T We cannot define Ai~mjn whep A = 0 and it is hecause of this that we nrust

oxclude the zero value,
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we find that, since 7' is non-singular and A7 = 7C,
(i) K is non-singular;
(iiy KC == BTC = BAT,
AK = ABT = BAT,

(i) 4K = KC,
g0 that 4 = KCK-1, :

It is not obvious that f{4) defined as Kf(CYK- will be the
same as Tf{C)T-1. When we were dealing with power seri@
(§ 3.1) we proved that, assuming convergence, .

Ya,Ar = T( a, C")T-2
whenever 4 == TCT-1. In proving this result we Qeﬁned'the
left-hand side as the limit of the sum of N terradof the series
and this definition is independent of 7. Accoidingly, when we
are dealing with power series f(z) and matziees 4 and € whose
latent roots lie within the circle of congkfgence of f(z}, the
definition of f(4) by means of the equation

F(4) = THQIT
Is a unigue definition and indgpéﬁdent of what particular 7' we
use in the equation 4 = T '

Now let F(z) be an analytic %tmct_ion regular in the neighhour-
hood of the origin. Le\‘l%}? be the canonical form of 4 and leé

| ASTOT, A — KCE.
Then, providegl\'é;t I is sufficiently small, F(t4)} and F(tC') are the
sums of conyergent matrix power series and, as we have just
o O TRe)T and  KF@O)K- (1)
are Qlix}\and the same matrix. The maftrix F(iC) has elements
E(m», tF'{#A),... (§ 8.2), and the elements in the rth row and sth
- Seolumn of the two produets in (1) are of the form :

I $rs(t),  Pulth
where ¢, . o, denote analytic functions of the variable &. We
have proved above that

& ¢‘2

i Prslf) == hs(f)
when |¢| is sufficiently small. Tt follows from the theory of
analytic functions that the two remain equal throughout their
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domain of definition; in particular, when no latent root of ¢
is a singular point of F(z), the equality holds when = 1 and
thus, from (1),

THCT- and KF(C)K-1

are one and the same matrix,

8.7. Matrices f(A) and h{A) are commutative

Let f(z), #(2) be analytic functions of z regular in the neigl’;\
bourhood of the origin and of each latent root of a ma\i;i‘ix,A;
let f(2}h(z) = g{z) and let the matrices f(A), A(A),(J(4) be
defined as in § 8.2. \.

We have already proved by means of Lei{tﬁ’tz’s theorem

(§8.4) that FA(4) = g().

When we reverse the order of f, & and \}H;i}e" h(z)f(z) = g(2), the
same work gives - '

A\

WO
| h(A)f(A) = g(4)"
Hence FARA) =RA)f(4)
and any two functions of a ma,tnx A are commutative matrices.
9. The canonical form @(C)
Let . (O diag{C,(N),,.}
be a canonical mdrix and f(z) a function of the scalar variable

#. Then “\ J(O) = diag[ fiC, (AL, ...],
where {\
Q7 O rm L feuym—1)
’“\.f;’z}{oﬂm)}z -0_ -:f(h). Co FER) =2t
\'"\}.n. 0 0 ) ) f()‘)

I.[n order to find the canonical form of the full matrix f(0), it
is sufficient to find the canonical form of a typical submatrix

G-
9.1. When f'(X) = 0

~ When f'(0) 5 0, appropriate H changes (of. Chap. IV; §£.2)
will give a transform of (1) in which, the diagonal elements are
), the elements one place to the right are f7(1), and all other
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domain of definition; in particular, when no latent root of ¢
in a singular point of F(z), the equality holds when ¢ = 1 ang
thus, from (1),

TRHCYT-! and KF(EHK T

are one and the same matrix.

8.7. Mairices f(A) and R(A) are commrntaiive
Leat f(z), k(z) be analytic functions of z regular in the neighs
bourhood of the origin and of each latent root of a mateiz.d;

4

let f(z)(z) = g(z) and let the matrices f(A), h{A) (Y be
defined as in § 8.2, A
We have already proved by means of Leibmibz’s theorem
8.4) that Qg
§54) tha FUARA) = gld). 3O

When we reverse the order of f, k and wQ'Lg hz)f(z) = glz), the
same work gives ¢

RA)f(4) = g(A%
Hence FLAMA) =hiA)f(4)
and any two functions of a ?pafﬂ?xA are commaudalive matrices.
9. The canonical form o(ﬁ(‘,‘i
Let . O diag{C,(\),..., .}
be a canonical rzllai%rix and f(z) a function of the scalar variable

. Th o\
TR D7) = diag[ £, . ],
where /50N

&

) f 'y .. D) n—1)"
..3;\ﬁoﬂ()t)}= 0 )2
QX o 0 LW

’¥n order to find the canonical form of the full matrix f(C), it
1s sufficient to find the canonical form of a typieal submatrix

F{C ).
9.1, When £'(3) o 0

.Wh.en I'®) # 0, appropriate H changes (ef. Chap. IV, § 4.2}
will give a transform of {1} in which the diagonal elements are
f(3), the elements one place to the right, are f(A), and all other
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elements are zero. The canonical form is, affer an X change
. {cf. Chap. IV, § 5.3), simply C {f(A)}.
9.2, When f/(AN) =0

Let f®{A) be the first of f'{X), £*(),... to differ from zero.
The eanonical form of (1) is not quite so simple as in § 9.1, but

2ok g
-. ° ’\
k ; P
B
| W
i g
k x,\\ \
! O
k e * \ \ .‘
A
1A
k N | gq
) } g
9 Y

) ':QI:&ERAM 2,

the method of chains,:\“ghzen in Chapter IV, § 5.10, enables us
to find the canonicalJorm without too much difficulty.
The first row'ofi(‘l) is L
00 . FREQ)E . fEN0) (1)
Appropri@t\%{}:{ changes give a transform of (1) in which all -
terms aff r f®)(A)/k!] are replaced by zeros; and so for the other
rows'On marking the positions only of the non-zeros that lie
off the principal diagonal, the transform of {1) just obtained
pears as
| (1,k41)
(2, 5+2)

(n—k, n).

Let n = pk4-q, where 0 < ¢ < k. Then {with p = 4 and ¢ > 0)
Diagram 2 above gives a picture of the complete matrix under
consideration. In this diagram, the heavy dots mark the non-
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zeros that lie off the principal diagonal, while the hroken line
shows the chain formed by the linked non-zero clements

(g.k+q), (k+q,2k+-¢), .. {(p—1k+q, phiql.
This chain has p non-zero elements; moreover, there are ¢
distinet chains of this length, beginning with the non-zero
elements (1,k4-1), (2,k+42),..., {y,k+y) rcspectively, Hence
the canonical form of the matrix contains €, {f(A)} repeafed
¢ times. Again, there are k—¢ chains, beginning with the non-
zero elements (g4 1, k+q+1),..., (&, 2k) vespectively, x;.ahfich have
only p—1 non-zero elements: these chains end in the {85t square -
of side-length % because there are no non-zero elq@@rfts available
to carry the chain into the strip of width q;)& the right of the
diagram. Thus the canonical form alsolediitains C,{f(A)} re-

. peated k—g times, 7\

Y

\‘z

Since plk—g)+-(p+1)g =Pk+q ==,
the » by n matrix can contgaig‘fﬁo other terms. Hence the
canonical form of f{C,(A)} is given by the following rule:t _
If f®Q) is the first off‘f?t), F(A),... to differ from zero, and
% = pktq, where 0 <G < £, then .
HEA BaglC O Cy
the (i, repeated k—{y times and C, 11 repeated q times.

9.3. A?z.;ai‘te}*native procf

The.sg,xhé result ean, with some thought and ingenvity, be
derivéél“ﬁjrectly from the H.C.F.’s of minors of a matrix of
f{lf‘-i‘? % = pk+4q. Consider a matrix with « in each diagonal

Place, unity in each place k to the right of the diagonal, and
zeros elsewhere.

Let D, be the H.C.F. of minors having r rows and columns.
At sight, and using only the elements 1,

Dl == ‘D2 = aee =

To get a non-zero miner with n—%-1 rows and columns wé

must include an o; and to include one « is to be forced to

-n;k =1

1 The rale is given in D, E. Rutherford, Proc. Edinburgh Math. Soc. 2,3

- {1932), 135-43,
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include an « from the next square and, with a little trouble
over details, a total of o?. Thus _
Dﬂ.~k+1 = a?

and, in the same way, an additional o? at each step until we
thereafter, we have to include p+1 extra a's to

get to D),_.;
! N\
& t ’\\
k ':": S
a | ~N
O
o 1 \ i
on
& b S
w T W
D
a..\ & (
T
Y S z I i
L\
N o
- & [N I3
. ‘0’}; 4 ol

{\Drscmam 3.
WO

¢ ':\:l . . -
complete a non-zere minor having an extra row and column
and an additional«?+! enters into the H.C.F.t Thus

Dﬂ_:,f{];\c" o, Dy pp=a®®, .., D, _ = oF—0r,
,\\i:\: D, g1y = oD, ... '
Tl&(}fi@\results show that
»\.’\' B =E=.=8_,=1
. _ En-—kﬂ "': s = En.—g = o¥,
En—q+1 == ,,, = En = o+,

and that the canonical form is
diag{C, () ... (k—¢) times, O (a)...q times}.
-t The argument iz indicated omly: the reader msy care to accept the
challenge of proving the result thiz way. . _
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10. Differentiation of matrix functions
10.1. Differentiation with respect to a scalar variable
When the elements of a matrix are functions of a scalar
variable ¢, say A@t) = [a,()],
we define dA/dt to be the limit as 2 — 0 of
{A{t+R)— AW},
This limit is well defined and is equal to the matrix "\

a0

provided only that each a,,(f) is differentiable.

The matrices A(¢) and d4/dt are not necessa-rikfzc\ommut&tive.

10.2. Differentiation with respect to a mdiesy variable

Let ¢(4) be a given function (according-+to the definition in
§ 8.2) of a matrix 4. Then we shall a‘hqw‘ ‘that, as A — 0,

{¢(A+M)_ﬁ¢(‘a‘)}/h (1)

tends to a limit matrix: this matrix we call the derivative} of
¢(4) with respect to 4 ap@Vwe denote it by the notations
common in sealar differentiation, such as

~A ()
¢ '\\..’ [;S (A)) _d“.cTu.

In order to proye that (1) does tend to a limit as b — 0 we
first considend{C), where

> C=T4T
is the,Ql'@S’sical canonical form of 4,
When C = diag{C(M),...}

~ths definition of § 8.2 defines $(C), provided no latent root of
C is a singularity of the scalar function $(2), by the equation

$(C) = diag{F,(),...}, (2
where .
A} F N . . gD (k—1)! .
Eq=| 0 #0 . dGe-t )
o0 . $)

T The only reference I have foumd in the litarature iz Born and Jordan,
Elementare Quantenmechanik {Bpringer, Berlin, 1930}, p. 3%. B
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Further, ¢(C'+ A1) is obtained from the above by ertmg Atk
instead of A and, as & — 0,

O —S(C)}/h

tends to a matrixt of which a typical submatrix is

) ¢ . . SNk

P = 0 | iﬁr()‘)_ : %(k-TJ(A).[(k.—?‘)I _ oy
R N AN
Thus $'(0) = {d%}(l}‘}’ } ; 3 “5)
We now prove that, as k-~ 0, D ’
BAFRD—gYR SV
tends to a limit ¢'(4) given by \\“ .
#(4) = P (O)FD C®

Since A = 7'C7"! and A+l == T(C’—l—kI)T—l the functions
H(A-+RI} and H(4) are dehnedby o

d{A-+hI) = T(#(O-{-h{)lr 1 H(A) = TH YT
Accordingly, \\

x

¢(A+M -—}(A) _p$CHR)=dO s T
h .

We have prO{ed that the middle term on the right tends to
a ]jmit&@;‘ and, as in § 3.1 (with % - 0 instead of ¥ — co),

it followsg hat the right-hand side of (7) tends to a limit
-~ AN T¢(C)T. (8)
{hga“proves {6).

10.3. Differentiation of matriz power series

Let 3 a, 2" converge when |z| is sufficiently small. Then
it represents in the neighbourhood of the origin an analytic

1 Since A is not a singularity of ¢(z), {AFh}—(ANE - ¢'(A), and so for
the other elements of Fy,(A).

t In Dbrief, when T = [#;], T = [0], and y{h) = [y —> Dvisl = 7 it
follows that Ty(h)T— = [t yea(h)fys] > Ltig via O1gd = T¥T
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10, Differentiation of matrix functions
10.1. Differentiation with respect to a scalar variable
When the elements of a matrix are functions of a scalar
variable ¢, say A(t) = [a,(1)],
we define d4/dt to be the limit as & — 0 of
{A(t+R)— A(B}h.

This limit is well defined and is equal to the matrix \<

d SO\
[EE am(n] ] {:‘ »

provided only that each a,,(t) is differentiable. o~
The matrices 4(¢) and dA/dt are not necessaril{‘ dommutative.
10.2. Differentiation with respect fo o matcsdtariable
Let ¢(4) be a given function (accordi'ng\iio the definition in
§ 8.2) of & matrix 4. Then we shall s\}‘lojv‘that, as b — 0,
(B(A+RI)— AN 1),
tends to a limit matrix: this mafiix we call the derivative} of

$(4) with respect to 4 andWe denote it by the notations
common in gealar diﬁerentiaiion, such ag

) dé(d
\ (O L.
In order to préve ‘that (1) does tend to a Hmit as b — 0 we
first considen, ({7}, where

9\ C = T14AT
is the 'O\Qaé'i‘éal canonical form of A.
When = diag{C,{A),...},

-.ﬂ%deﬁﬂition of § 8.2 defines ¢((), provided no latent root of
\Lisa singularity of the scalar function $(z), by the equation

where - HO) = diag{F(),...}, @)

$A) ) . L gEDRY(E—1)! :

FEm=190 ¢ . . %20yE-2)1 (3
Lo o 007 T

. ¥ The only reference I have found in the literature is Born and Jorden.
Eiementare Quantenmechan :

ik (Springer, Berlin, 1930), p. 38.
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Further, ¢(C+A1) is obtained from the above by wmtmg Atk
instead of A and, as & = 0,

(HO+RD— Ok

tends to a matrix} of which a typical submatrix is

FO) dW . FNY (B —1)!
Py=| 0 #A . . 95" 1"(91 /(Fc L
Ce 7N
o0 R SN
Thus #(0) = digl 2D, .} Ke ¥
We now prove that, as b — 0, \x\\\ '
B+ - SO
tends to a limit ¢'(A4) given by x:\\J _
$'(4) = T {CYI. ('

Since 4 = TCT-! and 4+4] =1 {C +-RI)T-1, the functions
HA+RIY and H(A) are defined >by

$A+RT) = T¢(0+M5:P~1 44) = THOT.

Accordingly, p .\\
HlA+hDE X»(A) _p¥CH 4Oy
k b ‘

Wo have prove?i that the middle term on the right tends to
a lmit Q\and as in § 8.1 (with % — 0 instead of N - c0),
it fo]low “that the right-hand side of (7} tends to a limit

Q) T/ (C)T-1, ()
IB};EjS':PTOVeS {6).

10.3. Differentiation of matrix power sertes
Let 3 a,2* converge when |z] is sufficlently small. Then
it represents in the neighbourhood of the origin an ana,lytlc
t Since A is not & singulazity of $(z), {$(A-+4)—$ANA* > ¢'(A), and 5o for
. the other elements of Fr(A).

¥ In brief, when T — [£;;1, 7% = {8, and plh) = [yl {yyl = P it
follows that Ty(hT- — [t Yialh)bys] > [t yaa O] = Ty T
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function ¢(z). Let 4 be a square matrix and (f = T-147 its

classical canonical form; let '
C = diag{Ci(),...}. (9}
In addition to these data we make the sole hypothesis - -
‘Y na, A"l is convergent’. Then (Theorem 20} ¥ na, O g
also convergent. Further (corollary to Theorem 21), the series
2 na, A"t and the serics obtained by differentiating it once,
twice,..., k—1 times arc convergent and their sums are\g‘ﬁen
by ¢'(A), ¢”(A),..., $)(A); and that for each A and corresponding

k of (9). Hence, by § 5.2, O
na, Ot = diag{G,(A),...}, £\ (10)
where > i Ix\\\ ’
¢'(A) () . . ﬁb”fJ(é\)EVﬂ—l)!
' SHEAD S
an=| ©° . Qf’(?‘? o ,i\“‘- (71)/('5- L I )

R A

Again, the convergence of E?a;:n A1 {0 A'(A) implies the
‘convergence of 3 a, A* to () Thus, on using what we have
already proved above, thejééfies > a, A" and the series obtained
by differentiating it qnéé;&twice,..., k—1 times are convergent,
their sums being “95'\(5\}, ¢’ (A),..., ¢%-D0). Hence the series
Ya,0%is conv,gx%’eﬁt and its sum is equal to :

NSB(0) = diag{RM),...},

where FQ)ds defined as in (3). Moreover, d¢/dC' is now ob-
tained 28 § 10.2 and, as a comparison of (4) and (11) shows,

’\\w: dc;( )

N o = diag{G(\),..} = 3 na, C"-1.
o~ @HJ'S proves ()S'(C) = Z na, -1,

) Henee POV = (S na, Cr1) T,
80 that, by (6} and Theorem 20,
| #(4) = 3 na, 473,
- We have thus proved
THECREM 24. Given that

- (i) 2 @, 2" converges for some non-zero value of 2,
@} 3 na,d7-14s convergendt,
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d
then = Z @y A™ = 3 na, A»2 (12)

NoTe. The argument is slightly simpler at certain points if we
assume that all the latent roots of 4 lie within the circle of con-
vergence of 3 a, 2" but there is some interest in proving (12) under
the minimum hypothesis, that the right-hand side of {12) converges.

11. Some details in the algebra of power series :
In this section we suppose f(z), g(z) to be analytic functions{\
in a domain containing the origin: their expansions are taken
to be ¢ I "
flz) = 2 a,7* with radius of convergence % \
9\

giz) = 2 b,2"* with radius of convergen} p-
n=0 ' N

When |z] < R, the mth power of f(z) cm\\lﬁe expanded ag a
power series in z and we Suppose 4, ;4o ‘e the coefficient of

™ in this expansion; thus x‘j\
@ m ,j:n‘." i
(,LZ @, z”‘) =2 Oy
=0 ~j'."’n£0

11.1. The product of twogpower series
When z lies Wlthm the\cucles of convergence of f(z) and g(z),

fz). 9(3’) Z ayb,+a,b,_ 1T @y b
2o~
o~ {\‘“ =ﬂ=ﬂc
say. Deixite the sam of this series by h(z}.
Lg?, b‘ be a clasgical canonical form, say
.“\ o
O = diag{C,(A),...},
ose latent roots lie within the circles of convergence of f(z}
and g(z). Then a typical submatrix of f(C) 18

SN L fEIE=)!
fey=1° @ . - f“f—@m/(k—z)f
o o .. W

and a typical submatrix of g(C) is got by replacing f by g.
5378 .
I ' .

z’n

MS‘

E3
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Form the product f{C,).g(C.}. Then, by Leibnit«’s theorem {as
384, £(G)-9(C) = MC)

and go {again as in § 8.4} ’

JICY.g(CYy = B{C).
On writing 4 = 70T,

fld}.g(d}y = Tf(CYT1. Tg(C)1'? O
— IOV O
= TH{C)T1 = R{A). o

That is to say,

TaeoREM 25. Provided the latent roots of, f’l\\he within the
circles of convergence of the two power series Z}z 2 and > b, 2%,

(za An)(ﬂZb An) -—-,ﬁ*c A,

where Cn = By b, +a,d "Kﬁ e, bg.

Corornary. The result cauthé extended to the product of
any finite number of series,. In partlcu]ar when the latent rools
of A lie within the circle of convergence of 3. @, 2%,

(\»anAﬂ) ﬂgnaﬂ_'mA“.

11.2, Subgi;zi}gtwn of one power series in another

Preliminary! Let |]A| < R, the radius of convergence of
:'\so'

& f2) = agt+a z+ay224-...
L t ’N’e the unit matrix, I/ the auxﬂlary unit matrix of order
fep &a ; then U* = %41 — | = 0, the null matrix. Thus
~ .?tM+ )
’ = lim 2 a, (A + Uy
o Nosrwo -n,zoaﬂ X
KANRT LpAn-17 nin—1)...(n—k+2) -kl Uk-ll
‘ + et (R« 1!

= fA I+ QU+, HfE-DQ)

(k 1)l
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. Also, on writing f for f(a), f' for f'(), f™ for {f(A\)} and so on,

R-1
(-1t

{fAH O = frltmfmif Ut...+ ;;_jl(f ™)

11.23. Scalar power series. We first establish those results
about scalar power series that we shall need in dealing with
matrix power series and begin by quoting & standard theorem.,

THEOREM 26. Let ~\\'\

9) = 3 bmt™, Nylg.

with radius of convergence p. Then, provided thab. the series

Y |a, At 45 convergent and has @ sum 8 less than p%{ fX)} may
be expanded as a power series in A by means of t?m steps

glfO} = 3 b 3 a, 200" (1a)
w® \\ N
= > b, anmh"‘
=0 ““’?
:»J% ( mz= obm aﬂ’m) »
&3
O néucn xm, (1)

say. The steps feudin valid when b, a, are replaced by their
absolute valuegxa Tortiori, the series Y. [c, A®| is convergent.}

COROLkAﬁY 1. The series 3 mb, g1, 3 m{m—1)b, 4™2,...
have thdseme radius of convergence as the sertes 3. b, y™. Aecord-
mgl«y,,\emder the conditions required for the theorem we may also

-~ obmm S mb(S a, AL S g (m—1)bp (D, @y AR, a8 power
\88?‘%88 in A by expanding and collecting like powers of A. The
resulitng series are

20 (m2= mb @ =m“1))m7 ﬂz: ( i m(m’"'l)bm an,m—ﬂ))"ﬂx

LG 0 ‘m=0

1 Cf. K. Knopp, Theory and Application of Infindte Series (Blackle and Son,
London, 1828), p, 180.
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There is a further small refinement of Theorem 26 that we
need to formulate explicitly. This is

CoroLrary 2, If | << R and 3 |8, A" < p, then A lies

. WITHIN the circle of convergence of the series 3 ¢, 2.

Proor. Let R, lie between |A| and R. Then the sum of
> le, 2" is continuous and monotonic increasing in
< |2l € B, < Ry
we can, therefore, choose a A; such that |A] < |A; | < Bpand

2 la,At] << p. By the theorem, ¥ ¢, A2 is a.bsolute]y imnver-
gent. Therefore, since |A| << |4, A Hes within (andx riot on the
\\ \Y

11.22. Application of the theorem. We rioWw suppose that

|A| << B (to enable us to use Corollary 2)oand Y |a,A"| < p.
Then, by the theorem itself, \\w
2 Dl }“’“ w\ZG an,

By differentiating this result

(3 mbm{f(ﬂ)}’""l}f M) = 3 ne, 0, @
the term-by-term djﬁe\rentlatmn being justified because
SVWI < S landrf <o

and [A] is legs hha.n the radius of convergence of 3 ¢, 2
By Comﬂary 1, the above gives

\{‘ (2 mb anm—l) ” E R, }lﬂ'l} = i HC,, }lﬂul (3)

=0 =10

Qhe product of the two power series in A being formed as in

“\“Theorem 25, Similarly, we may prove, by differentiating (2)

and using Corollary 1,
m-u (mz mb_ a,, m—1 ][nz n(n—1)a, Ar- 2] T

H3. (5 o[ ST

=0 ‘m=p

- § nln—1)e, A" %
=0



FUNCTIONS OF MATRICES ' 117

and so on. Thus the ‘expanded’ form off
dr 3 ml — < B~ —
tﬁ;{ménbmf ] —-ngnn(n—l)...(n—r—f-l)cn/\ r=1, 2,...).‘

11.23. The classical canonical matrix in o power series. Let
C(A} be o classical submatrix of order £, so that '

CQy = AI+U,
where I, U are the unit, auxiliary unit matrices of order k\\
As our preliminary work showed, when i?\] < R, O

v N 3
Ukll\ )

(ALY = 2T fmfntf U () e
Now let A} << R and Y |a, A} < p. Then \‘

36 Sa, 00" = 3 buisor+ T

— 2 {fmI—I—mfm i U‘Jl‘\\;'d{\k_l(f )(k 11)]]

= (20 2 0 1)U
By the results of § 11, {2‘\’5}118 gives

3 bm( 3 a, 0"') . \\

- and, on tqmg the notation
QO

tigves W) = gl = 3 0™,
\,2 al 3 0 O = YOI+ WU+ +"("k {)EUM H(O),

4)
on recalling § 5.1.

We have thus proved that when
gif(2)} = ¢iz)

1 Apin § 112, f™ denotes {f{A)}™
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and C = AU is a classical submatrix for which |A] < R and
k)
2l Xl <p, GO} = H(O). )
The extension of this result to a matrix

C = diag{C.(A),...}
iz immediate: for

O = diag[{Ch(A)}",...], "
- o0 . N\
2 4,0 = ding| Sa G ] (O
n=y im0 O\
${(C) = diag[y{C,N)},...], Q

{2
and the steps required for (4) can be carried ot dor each sub-
matrix separately.t N4
Hence (5} holds when C is any classiq%wnonical form pro-
vided that each latent root A sa,tisﬁeg‘ thetwo conditions
M<B 3 ah¥] <p.

11.24. The general matriz in, apowe*r series. Let A be a given
square matrix, € its claasicg:lﬁéﬁ-nonical form, and let

A = TOT-1,
..\‘4\

3

N\

As before, let K
flz) =53 w2 converge when |z] < R,

gBl= X b,2" converge when |z| < p.

(N
& ) @ L\
Let QO $(2) =mz=06m(nguanz ) (6)
o\ $z) = X e, 27,

the'series obtained by expanding the terms of (8) and rearrang-

A . - -
Ing as a gingle power series in z.

¥ Perha.psf the simplest process is this: let € be of order N and let (Cy)
be the matrix of order N that consists of (3} in its proper position and of
£er08 everywhere alse. Then

C= (CRHO)+H(C) +-.., say M elements.

Eat."h Pproduct {Cﬁ)(oa)’ with p # ¢, is the noll matrix and the work of (4} is
easily thought of as M caleulations each of the type

2 bl 3, 20 {CL)™ = (O
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Then, in succession, on using Theorem 20,

A=TCT  f4) = TfOTY,  {fd)n = T{fO)mT,
$d) = 3 bafflAN = 3 b, THOY T
- r[mi;ubm{ Foy| 71 = Tg(C)T,

and (A} = DO T, ~
. XA
the steps being subject to the sole condition fhat the mﬁmﬁ
series which occur are convergent. AN
We have proved in (5) that R S
$(C) = $(0) R

whenever each latent root A satisfies the two coﬂahions Al < R,
> |a, ?t’”[ <2 p. Hence, under the same condltmnﬁ

H(A) = A{\ \\
- We sum up our results in a formé:lx}leorem
TaEOREM 27. Lef O -
f&) =Y a,» étmverge when  |z| < R,
glz) = bﬂw{\ converge when  |z| < p,
and let 4 be a sgum@vnamx for which each latent root A satisfies

the two cond@twns )
DN <B 3 laN <p M

Then S‘ méubm{f(A e

: N\ .
0@31 bé copanded in a power series in A by the steps

QL ol 204" = 5 10 § ot = 3, 5 bt}

m=0 #n={
In brief, under conditions (T), we may substitute y = f(A} in
9{y) and rearrange the result as a power series in A.

11.3. Power series whose sum is the null matriz

Suppose that f tt, A™

n=_0
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is convergent and that its sum is the null matrix for all matrices
A whose latent roots are sufficiently small in modutus, Then.

(cf. § 5) o
E a?& An
=t

is convergent when [A| is sufficiently small and its sum is Z8ro,
By a well-known result in the theory of functionst

a,=0 (n=012,.). O
It follows that, if O
2 a’ﬂ.An = Z bn,An A ".;w:
#=0 n=0 '\~
A

for all matrices 4 whose latent roots are sufﬁ\;:iently small in
modulus, then N\ 4

=5, (n=0,1,2,3)"

, £ :\ 4
and we may write 3 a, 4" = > b.,l\xfl.’(f provided only that the
series are convergent, C}‘ ’ '

TR

N °
11.4. The reciprocal of a power series
When ¢, 3£ 0 and |z| isé@ﬁfcienﬂy smal,
. AN\
\ = 2 . g
{@g+0y 2+, 22’4\;}"\.)—1 =gt Z (_m—f__')
B\ m=0 - %
and this serie\s imhy, in virtue of Theorem 26, be expanded a8
a power ge{ié;s n z, say
i..{:{. : i _— (8)
§ iy
The existence of the convergent expansion (8) being thus estab-

~Jished when |2 is sufficiently small, we most easily determine
/¢, from the fact that

(X a,2)( 3¢,z =1 (9)
when |z is sufficiently small, This gives (by § 11.3)
aocl] = 1, aucl+alco == 0, . (10) .

t Or see W. L. Ferrar, 4 Text-book of Convergence {Oxford, 1938}, p- 115
Theorem 47.
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‘Thus, when a, % 0, there is a power series 3 ¢,2%, with
coefficients given by (10), for which

{ E @y 2" 2 6, 2" =1
whenever # lies within the circles of convergence of the two -
series (for this is the sole condition needed to justify forming
the product of the two series as & single power series).
By § 11.1 this carries over at once to the reelprocal of a matrix
power series. When ¢, #* 0 and R\

flAd) = ag I+, A+a, A2+... \':‘.;x
there is a set of coefficients ¢, ¢,..., given by (10), fqr Whlch

eod -+, A+te, A%, {f(A)}-l ‘\\

provided only that each latent root of 4 lies Wltj:uﬂ the circles
of convergence of ¥ a,z" and > ¢, 7.\

11.5. The reversion of a power sew}e}
Let @, 5= 0 and let AL

= ao-{— ai tr:wl-a,z ..

be convergent When [z} < B Then there is one and only one
analytic funetion x of tiké variable ¥ which ftends to zero as ¥
tends to a,; when ¢ JQ% is sufficiently small, this value of z
may be expressed as'a power series in y-—dy, namely

y\x = by(y—ae}+byly—al+.. (11)

where thg%&: & are determined from the &’s by equatmg coeffi-
cients 0\%@—-&0)’"’ in the identity

\
~ > 3

P 3 I m.
O Yty = S amLz Buly—aey") " (12)
at is to say, the &’s are determined by

1= a b, 0= a by 4-a,b1)
0= ‘11 ba‘i‘z“z by ba‘i‘aabg, ‘ . (13)

The sole difficulty of the matter, asa problem in scalar power
series, is to prove that there is a number 7 guch that the formal
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work is logically justified when |y—a,| < %. This difficulty is
fully dealt with in the literature of scalar power series.
Suppose now that X is a square matrix and that y is given™

by y—aod = a, X+4a, X2+....
For convenience, denote y—a,{ by Y, so that
Y =a,X+a,X24... {a; # 0).
When the latent roots of ¥ are sufficiently small (which a-moqus
to saying ‘when the latent roots of X are sufficiently snall’'—

for when A is a latent root of X, the corresponding la,‘bfgn’s" foot
of ¥ iy @, A+a, A24-...), there is a power series -

ot
T

b Y b, Y21 ..., <Z.\\
with the b’s defined by (13), such that ’
ol =) \w.
Y =3 a,( 36, y2)0 (14)
©om=1 n=1 % s

The matrix result (14) follows f‘réx’n‘the scalar result (12) in
virtue of Theorem 27, the condifjens required by that theorem
being certainly satisfied W}}eﬁ: the latent roots of ¥ are small
enough. N

Now let E, be the gadius of convergence of 3 b, 2" and B,
the radius of convergence of 3 a,¢*. Let A be a typical latent
root of X and 1t fA) = @, A+a,A2+.... Then f(A) is a typical
latent root of ¥, 4nd when, for each latent root,

U< Ry 3O < By (15
the sefies’ on the right-hand side of (14) can be expanded as

a Pci;ﬁer series in ¥ and, by the relations (13), this power seTies
L. Jeduces to the single term ¥,

N Hence, if Y=aq;X+4a,X>|.., ' (16)

the b’s are defined by the relations {18), and the conditions
(15) are satisfied, then

Y — mﬁ: 1%_(§lbn o)™

t Bee, for example, K Knopp, loc. cit., p. 184, or T. J. T'a. Bromwich,

An Introduction to the Theory of Infinite Series (Macmillan, London, 1908)
p. 138. .



FUNCTIONS OF MATRICES . 123

that is, X=S0p,¥n (1)

=1
satisfies (16). _

Norm 1. In general the b’s are difficult to ealeulate explicitly and
one must be content with the fact that the result is true when the
latent roots of X are sufliciently smafl. Bromwich, loc. cit., p. 140,
gives an explicit formula for a number p which is less than or equal
to the radius of convergence of X b, y®. -

Nore 2. Supposing ¥ to be given, the matrix X defined by (19]\
is not the only one to satisfy (16): it is that particular X which tends
to the null matrix when ¥ tends to the null matrix; see, for eg{ﬁnplé,
Bromwich, loe. ¢it., p. 142, Example 1, where y = z—as? and/the =
corresponding to the reversion process is ) \.

® = ytay?+ 2%+ ., \\
ar that root of the guadratic equation in & whi¢k\s’ zero when y is

‘zero} the other root is o when iy = 0. O
NoTk 3. Any process valid for scalar powes series will serve to

determine the &’s in terms of the a’s: for e}:@rqplé, Lagrange’s theoremf
shows that, under appropriate conditions,"when
2 = a-ty( Dbwa")
or, what is the same thing, N\
y = (@—a)(Blnam)y? = 3 pas®

the appropriate series for{ﬁn powers of y is

¢.&\J P g dga—1
x‘—-_i}\{- Z%E&E_—l{gbmam}ﬂ,
L) n=1

In order totrésscribe a scalar theorsm into the appropriate matrix
form what Avd-have to ensure is that Theorem 27, or a theorem of
that nat?s, will cover the transcription from sealars to matrices.

#

12. Th\e differentiation of functions of matrices
MW%QSHPPUBB f(2), g{z} to be functions of z analytic in the
" Sweighhourhood of z = 0 and we take their expansions to bf’ _
@)= a,z,  g) = 2o 2"

We suppose that 4 is a square matrix and, whenever con-
venient, that its latent roots are sufficiently small in modulus
to enable us to apply the ‘algebra of power series’ s developed
in§ 11. We shall see, in § 14, how this limitation on the latent

t See, for example, Whittaker and Watson, Modern Analysis (Cembridge,
1520), p. 133.
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roots of A can be removed and the results freed of these condi-
tions, which are imposed solely by the methed of proof.

12.1. Bums and products
From the definition of § 10.2,
4 | 49

dA{f{A)*i-g(A)}*a T4 ay
Again, \\«
fA+RDGA+RD~f(A)g(4) :
= flA+RD{g(A R —g(ANH{f(A+RI )—f(AJ}G(A)

and it follows, with a little care over the details ,@ﬁhe limiting
processes (see Note in § 12.2), that '\

L f(Ayd)) = fa) ,ﬁgm). @)

But (§ 8.7) any two functions of A\a‘re ‘commutative and we
can write the factors of the produets that ocecur in (2) in any
order we please: we can thus dedilce Leibnitz’s formula

Df.g} = D"‘f-fH*%D“"If- Dg+-...+f.D7y, (3)
where f, g are functi 8 of the matrix A and D denotes the
operation of differesftiating » tites with respect to 4.

Again, whenyg,'% 0, § 11.4 shows that there is a matrix
{fian—? glven, swhen the latent roots of 4 are sufficiently small,

by a convergent power series » ¢, A%, in which the ¢, are
obtained\from the identity

O I=(3a,4"(3c, 4.
X Gn dlﬁerentlatmg with respect to 4, we get

FARAN 14 (A

whence %{f(fi)}—l = —f"(A){f( A ®

12..2. Nore. There is no difficulty, merely tiresome detsil, in ex-
tending to limits of matrices the well-known elementary theorems
concerning limits of scalars. For example,

if Ay, — A and B, -—> B, then 4, B, — AB.
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ProoF. Each element of 4, — the corresponding element of 4
and g0 e,k>0; 3N.whenn >N,
A=A, tekl),, B= B,+ek0,,
where no element of £, or 0, exceeds unity in absolute value. Thus,
when n = N, _
A, B, = (A —ekQ)(B—ek0y)
= AB—ek(Q,B1+A40,)+kH2,0,.
Now there is & finite number K such that no element of 4 or B\\
excoads K in absolute value. Supposing 4 and B to be squaa:e
matrices of m rows and eolumns, the absolute value of an elameht.

of 2, B or AQ, cannot excoed mK and the absolute valsle “of an
element of Q, 0, cannot exceed m. Thus, if we choose&\la o begin

with so that MEm <1, Bm<l,
weo have, when n = N, v
A,B, = AB—eOy+ DN
where (7, and D, are matrices whose e].g;peﬁts do not exceed unity

in absolute value. Hence 2
4,8, —>-A’B

12.3. The functions f(tA), fE4-+41)
We prove that, when h{\a scalar constant,

- (@) %ﬁf@/—‘l) = tf '(t4),
(ii) | \:‘?' D aiD) = fAD),
&
Pnoggx\(i}

PR Ny d @ w ,

(i} Let 4 =— TOP-1, where € is a classical canonical form.
Then [§ 10.2 (6)]

d :
it = 1% ot

— Pdiag [dFk{“‘) }T =
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wheret FOHD) 0
Bopy=| O SO0
0 R ()

;I‘hus f-l.« typical submatrix of df(C4-11)/dC is
f'A+t) 1A+

.0 . f’(?\’+i) \\

and hence df(C' +4I)/dC is given in the form of a power seﬁes by

Z na, (O,

,,\\ ‘

Hence d - \\
— A+t = T 5 na, (CHtIR]TF?

a4 =1 \

o ,‘;\]j'

— ¥ AL
_néfaan{A{tf\;R) .
O

12.4. Function of a function :;‘:‘ .
We shall prove that, when. ’Z is a function of ¥ and ¥ is a

a funetion of X, Z"':. a7z 47 )
\EX d¥ dX

provided that the k(bent roots of the matrix X are of sufficiently
small modulus (bt see § 14 for the removal of this proviso).
We begin | byzconmdermg the scalar result that corresponds

to (5). Le:f{\ g = fla), 2 — gly),

Where\'ﬁe analytic functions f(z) and g{y) have the power serie¢
expansions

\> J(=) =ngo% xn when |z < R,
9ly) = Zobm(y—%)m when  |y—a,| << p-
m=
Let lx] < R, f &, 2" < p, (6)
n=1
conditions that can certainly be satisfied by taking |z small

enough,
T See §10.2 (5).
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Then, as in § 11.21, o
2= bO+ Z an“,
=1

_ _ »
where? Cn= 2 bplpym;
W=

moreover z lies within the circle of convergence of 2 ¢,a™

Hence dz @ , -

— = gt

d&‘,‘ ,zgm“ . s
Further, ly—a,| < Y la, 27| < p, so that - _ "\(\.”

=1 O
L 3 mbafy—art =5 g, SOV ®)
d?} = . a=0 &’

where Br =mzﬂmbm W1 D |
. dy @ ”3 &

= = 27350 (9)
Finally, i ﬂéonmﬂ Q}V

The conditions (8) ensure that j:l}é:ﬁinctions_ are analytic and
5¢ dz ‘;}éé:‘dy
dg~. dy dx’
ESKC
Hence, for all x that s@fy (6),
o N \ [=a] o
gl = 7 i, £
2 g = 2 o) 2y }
and, on equg{;'@fg" coefficients, .
\\"'mn = @y By 200 Brmat o H 100, By (10)

R\
NP‘? det X, ¥, Z be matrices and let
O“\ N
A% Y —f(X), Z=g7),

- the functional relation being defined {independently O.f fbs ex-
Pression via power series) as in § 8.2. Let each latent root A
of X satisfy the conditions

N<B Sl <p oy

3 : : . — 1.
T @y, is coefficient of &% i (a; 74y 33575 e = 0 when n >
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We may employ the power series representations

¥ =% X"
=10

Z=3Sb,(Y—a, I},
m=0

and, by Theorem 27, substitute for ¥ —e, I in terms of X\td
obtain

Z=3 oY —aglyn = S X0 O
=40 =0
Now, by § 12.3 (ii),
az _ ,\\
Y—u I -~ 1 W

and so,.in the notation of (8) above,

dZ =
7 E N\"‘

Also (Theorem 286, Corollary, ?) each latent root of X lies within
the eircle of convergence «(;-f > ¢, x; hence

\\}

O ?}Z( ZincuX” 1, (12)

Hence, under th}condltxons {11),

" ‘;\“'\ ,jg 341; ( z B, X )( i N, Xﬂ.—l)

£ 3

and%é may multiply these series, in virtue of Theorem 25, to

obt}m
...\”\' ' E {2 Bn—1+202|8n-2+ tna, By) X7
" On using (10), this gives
4z dy g n1  GZ
d¥ dX = T ax’

- This proves (5) subject to the latent roots of X being small
enough to ensure that the conditions (11) are satisfied.f

T I tried to prove {5} withous Tesort to the algebra of power series and
failed,
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13. Taylor’s expansion
13.1. Let C be a single classical submatrix of order , and
let f{z) be a function of z which is analytic in a neighbourhood
of A, the latent root of €. Then, provided A-}-% Hes within this
neighbourhood, we may define f{(C+kI) by the equation {(cf.
§8.21) |
FO+Ry ffA+R) . fEPAER) (1)
fO+RD) = B (A
0 o . . PR R
With the above proviso satisfied, we may expand each elgﬁgeﬁ't‘
of the matrix by Taylor’s theorem, giving \ «~

104R) = FOHH Wos (D
OB = PO D)

and g0 on. Thus the matrix written above {i«s&fqua} to
FO) R (O 3250 (1)
When € is a general canonical f({l{{n’,”say
C = diagfGA),..}
we may apply the &rgumt;n.{%b each Oy(A) separately, provided
that, for each A, the pqinff?(—{—h lies in the neighbourhood of A
within which f(z) is an&@fic. Under these conditions

JOHRD) =[O (O @)
and, by using @—= T'CT-1 as on previous occasions, the resn.ﬂt
holds for sn§ square matrix 4; the limitations on the point

Atk for ¢h latent root A of A must, of course, be satisfied.

1&2 A more general result has been proved 'by H B. .
‘@Eﬁmpﬂ-i He has proved that, when Big commutative with 4,
J(A+B) = f(A)+Bf'(4) -+ (3)
The result is subject to the econdition that each Iatelnt ’1*0013 of
A+ B lies in that neighbourhood of the ‘corresponding’ latent
root of 4 within which f(z) is analytic.
¥ The limitation that F(z} be enalytic nesr z = 0 iz not essential in the

present section.

1 Amer. J. of Math. 41 {1919}, 266-78.
© B3Is hix
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The methods of the present chapter do not seem to be sufi-
cient to prove this more general result.

14. On the identity of two matrix functions

14.1, We confine ourselves, to begin with, to functions of
a canonical form € and, in following out details, to functions
of a single classical canonical submatrix C,(A). ‘Suppose we
have two functions of 2, analytic in the neighbowhood of the
origin, say F(z) and G(z). The functions F{C}(A)} and G{C,(\hare -
then defined by e\

FA Fy .. F{k‘l)()t)f!(k*}l,}f |
L I i T
0 0 .. W

with a similar definition for G{C,(A)}. The’ definition is valid
provided only that A is not a singu{gritﬁf of the function Fz)
or G(z). O

Near 2z = 0 the functions F(g)’%m& G(z) can be represented
by the sums of convergentoﬁgiﬁ:er series: let these sums be
denoted by f(z) and g(z), sagh®

foy =z, 9@ =3 b,
¢ b 2=t
When |z is sufﬁciph%l‘y small, F = fand G = g.
Now suppose-thdt we have proved, e.g. the work of § 11 and.

N
Zthat OF FG00) = glG0),
when Ai§ ytfficiently small. Then it followsf from (1) that
O JOR) =g (r=0,1,.,k—1)

) wheén A is sufliciently small, ie. that the function F(z) and it8
\?ir%f k—1 derivatives are identically equal to G(z) and its first
k—1 derivatives when |2| is sufficiently small. Since we are
dealing with analytic functions of a complex variable z, this
identity is preserved throughout the whole region common 0
the definitions of F(z) and G(z) as analytic funections. Thus,

when 2 lies in such a region,
o) = GO r = 0, 1,..,k—1)
“and, by (1), FIG) = GG}
T FandF, g and G are interchangeable when |2} is small enough.
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The argument extends fo functions of any classical canonical
matrix € = diag{Ci{}},...} |
and, by the usual A = T'CT-1 (cf. § 11.24), to any matrix 4.

14.2. The arguments of § 11.3 and of § 14.1 are useful in

extending the domains within which matrix identities can be
proved valid. For example, consider § 12.1 (4) with

~

f(2) = 1tzi2% N
What we there proved was that PR )
d 1 Iy24

TATrATE =~ ~uraray b0
provided that the latent roots of 4 were all sufﬁbiénﬂy small,
The result was essentially one ahout the pow;er geries repre-
senting the functions and the smallness .ef}ﬁe latent roots was
a condition needed by the algebrajef'¥he power series, The
work of § 11.3 enables us to see at A.glance that, regardless of
the requirements of the steps ofithe original proof, the final
result (2) will hold as an idgﬁ;ﬁt@! of power series provided the
latent roots of A lie within“the circle |z| = 1; for, subject to
this eondition, the twofé\?des of (2) are, since
1 < '\\..’Im A
I+Aya " T-4°
NIy —I-+342—44%+...,

SO0 — (AT A A AL
and thiedwo sides are known to be equal when the latent roots
A %{é small enough. By § 11.3, the result (2) holds 28 an identity

'gi'“power series provided only that the geries converge.

We sce further, by § 14.1, that (2) will hold as an identity of
Junctions provided only that no latent root of 4 is an imaginary
cube root of unity, for these two roots are the only singularities
of the function (142--22)-2. In this form there is no reference
to infinite power series, and the fact proved by (2) is that

= I —A+A3—-A*+...,

]im[ 1 ___L__} -
oo | L (A RN (A +RIP THA+A4P
= —(I+24)([+4+4%"
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15. Notes on functions of a matrix
15.1. Maclaurin expansions

We have, for the most part, confined our attention to fune-
tions f(z) regular near z = 0 and to power serics 3 @, 2% Such
a limitation, though convenient, is not essential; what is essen-
tial to the whole argument is that the function f(z) considered
shall be analytic in a domain of the z-plane and that in the
neighbourhood of some point z, QO

4
& W3

f&) = 3 ayfz—zg)n. W&

The fact that we have based our argumen 'oé';Bn i\f[aclaurin
expansions 3 a, 2" sometimes requires us tg ¥agke minor modi-
fications that would not be needed if we_had used the more
general expansion (1); for example, whenr

. WX )
f(z) = zm(a’o—{_alz"f‘%‘&) = zmg(z),

say, the work of § 12.1 cannc’)‘?‘ﬁf‘{)';'e directly that
d NN
- 1 - __f P 2
2z Vs = sy, g

This formula is, ﬁe?gf;c-he]ess, easily established; with a, #0,
§ 12.1 shows that»(2) holds when g replaces f and we have
merely to diffefentiate 4-m{g(4)}* by the product rule in order
to prove (Z)as it stands.

1 52\\ Definitions of ‘functions of @ matric’
- +The definition via a power series > a, A", given in § 8.1, .is
\'“aq dommonplace of the literature and an account of it is given in
many books?; the definition via the function f(z), given in § 8.2,
is not so well known, I developed it as a natural sequel to the
series definition; the only reference I can find in the literature
is a paper by M. Cipolla;} even such direct consequences of the

definition as those of $§ 8.4 and 8.7 do not appear to have been
published before.,

T e.g. Turnbull and Aitken, Oanonioal Matriges, pp. 62, 74, 75
1 Rend. Cire. mat. Palermo, 56 (1931), 14454,



FUNCTIONS OF MATRICES 133

15.3. Dirac’s definition of function

In bis Principles of Quantum Mechanicst Dirac has developed
what, from the point of view of matrices, is tantamount to a
general definition of ‘function of a matrix’ in terms of linear
operators and observables. ‘If two observables £ and g are such
thet any linear operator that commutes with ¢ also commufes
with g, then g is a function of £

" Turnbull and Aitken} have shown that a definition of matnr\\ '
function &

x

‘If matrices ¥ and X are such that any matriz P fo? whwk
PX — X P also satisfies PY = Y P, then ¥ s a fu@twn of X*

leads to the theorem that ¥ is a polynomial in X, nley show thab
when X has a given canonical form, ¥ has\a\gefinite number
of degrees of freedom; they also find a gex{eml formuls for ¥.

This approach to the idea of funct\l‘on i essentla!ly different
from that of the present chapter. (V'

15.4. A mairiz power series empressed' as a polynomial
As we showed in § 6, convergent power series

@ Iﬁ-alA-J}—azAﬂ—}- (3)
can be expressed as ay pblynomlal
B by At By g AT (4)

The Partlcular\ character of the representation (4) is perhaps

worth notingi the values of the coefficients by, by, depend not

only leﬁhe ‘coefficients ay, ,....bub also on the elements of A

itgelf, {ox rather on the minimum equation of 4. If we replace

4 iy E3) by & matriz D whose last invariant factor is different
y ~f§:om that of 4, we can indeed replace

o g I4-a; D+4a; D+

by a polynomial ¢y I4e; Do D ' (8)
‘ but the cocfficients ¢q, ¢;,-. in {3} are not the'same as the b, bysee-
~ In(4).

t Ozxford, Clarendon Press, 1035 (second edition): e p- 57 .
% Canowical Mairices, pp. 149, 150; in particular, Fxample 1, p. 150 gives
the most general ¥ that is, by the above definition, & function of

X = d—lﬂ-g{Cs(ai}, Oyle)s 02(;8}}
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As an instrament of investigation into the properties of g
power series, the polynomial representation has obvious limita-
tions.

15.5. The differentiation of a mutrix function
8o far as I can discover, no extensive use of the definition

of$10, 4 F(4) = lim JA T AL )___ﬁ), &\
dA R—0 h \\
occurs in the literature. The reference to Born a,nd'\Jg?Elan,
given in § 10,2, was found only after T had con'l]_)lqté?i\'most of
the work of the present chapter and T have fo{fﬁ’i’no other,
Various methods of ‘differentiating’ « nmgrrj\i{v are given by
C. C. MacDuffee in his chapter on I'unctionsef Matrices.f
The developments from the above defihition and the work -

on the algebra of matrix power series l)&?ﬁ& not, I think, appeared
previously in print. P\4
N/
T The Theory of Matrices {Chelsea Piblishing Company, New York, 1046},
&

» ‘:Q: ¥
A\
W\

£ )
¢ \/

AN



CHAPTER VI
CONGRUENCE

1. Introductory

1.1. In Chapter II we considered matrices 4 and B eon-
nected by a relation B = RAS, where K and § were non-
singalar matrices. In Chapter IV we studied the result of {\
requiring R and & to be reciprocals: we now consider the result
of requiring R and S to be bransposes: that is, we eons’lder

matrices HAH ) ;.“

where H’ iz the transpose of H. We deal with th mﬁtter only
in an elementary way and take 4 to be a sythmgtrical matrix
whose elements are real or complex numberg

The chief importance of the equwalence
B= H’AI{ N (1)

lies in the fact that when a quadrﬁp;c form
2 rsx*rx (b = ) (2)

r=1s=1 ,

is transformed to va,rw:blks Ypooees Y by the transformation
x = Hy, the new for,n\k

A

IIM;s i

n B}
) 3
',\ z re e Yo (3)

where the mgﬁmx [brs] is given by (1). The first problem is so
to chooge M that B is a diagonal matrix: the form {(3) then .

-red
u?fefs'\to by Y5402 3 24O Y

£\ .
<\Wé shall here treat the problem as one of matrix equivalence.}
1.2. When the matrix B is related to the matrix 4 by &
relation B — H'AH we say that B 15 coxgruEsT T0 4. We
note that the relation of congruence is
(i) reflexive, for A = (H'}-1BH-!
— (H-1Y BH,

T F. 124,
1 F. 148, Theorem 47, considers the quadratic form and not the matrix.
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and (11) transitive, for when B = H'AH and ¢ — K'BE,
C=KHAHK
= (HKYA(HR).
In the sequel it will be important to recognize that when 1

is congruent to 4, € to B,..., and finally L to M, then M i
congruent to 4. \\‘
1.3. We shall often use two particular types of matnx »oon
gruent to 4:
(i) The matrix got from 4 by mterchangmg twrg rows ang
then interchanging two columns in the resultifig matrix; this
is, in the notation of Chapter 11, § 1.3, the ma}nx

yAL;.

(ii} The matrix obtained b} addmg Wtimes the ith colums
of 4 to its jth column, and then aglding % times the ith row i

the Jjth Tow in the resulting mat»nfc this is, in the notation o
Chapter II, § 1.3, the matrix -

(I+I@1)A(I+Hﬁ) I+Hﬁ) (14 Hy;).
1.4. Preliminary le Wlts

Lewva 1, Givep, dSymmetrical matriz A, other than the nul

matrize, in whiok @iy 15 zero, there is a congruent malriz B i
which b, is ?ws 200,

Proor, \H any diagonal element, 88y y, is not zero, th€
inter gnge of the first and ¢th rows followed by interchang
of tb\ 1t and ith columns gives a non-zero first clement; the
Tﬁs‘lﬂt 18 & matrix congruent 4o 4 and is the matrix B required

If all @ are zero, then at least one g (¢ 5= ) is not zero.

\ h
e mates = (I+H)A(I+10,),

with % = 1 {add ith column +o jth and then ith row to jth]
has an element @yt = 2a;; at the jth place of the Jeading
diagonal. We obtain B from ¢ by interchanging the first and
Jh vows and then the first and Jth columns.

Nore., When we consider the wider domain of abstract algebra,

it is possible for a field F to have ¢ CHARACTERISTIC p that is to say, for
each eloment o of F

atot...to p terms
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is aqual to zero.} Lemma I, which turns on the fact that
_ ag+ay = O
may be false in a field of characteristic 2. Thediagonalform of Theorem
28 is not always attainable in such.a field. ' _
Roferencesto the exclusion of fields of characteristic 2 at this. point

of the work are common, in theliterature of thesubject, e.g., MacDuffee,

p. 86, Thecrem 34.1. .

Luamis 2. When A is symmetrical and B is congruent fo 4, o
then B is also symmetrical. N

Proor. Leb A’ = A and B = H'AH. Then A
B =HAH= HAH = B. R "
SO0
2. The diagonal form ¢ O

TrmoRny 28. Given a symmelrical matriz 2 other than the
null matric, there is a matric H for which C = H A H isa diagonal
matriz, Moreover, if the elements of A lightva field F, so do the
elemenis of H and C. g \%

Proow. (i) If @y, = 0 we first ﬁn&a congruent metrix B in
which b,, = 0. If a;; # 0, we pilt»B = A.

(i) We now have B congfuent to 4 and by # 9. Add A
times the first column onQ to its jth column and in the result
add b times the first, 10w)to the jth row, The resulting matrix
is congruent to B andvthe jth element of its first row is

Q" bayt-Bbyy.

A suitable cholet of & makes this zero and a succession of such
steps yi%iﬁ’matrix D congruent to 4 and baving as its first
Tow 6{11@ 0 followed by n—1 zeros. Since D is gymmetrical,
the.fivst colurnn is also d,, followed by n—1 zeros.
“Moreover, any matrix I,; used in step (i) has elements that
are either zero or unity, so that the elements of B lie in the
field F. Again in step (ii), the matrices I-+Hy involved in effect-
ing the congruences have elements that are gither zero, mity,
or —by.ib;,; hence their elements lie in F and so then. do those f)f

(I +H,) BUI+Hyy)-

T W. V. D. Hodge and D. Pedoe, Methods of Algebraic Geometry (Cambridge,
19 47), p. 14; A. A. Albert, Modern Higher Algebra {University of Chicago
Beience Series, 1936), p. 50. '
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and (i1} transitive, for when B = H’AH and ¢ — [ 'BE,
’ C=KHAHK
= (HK)YA(HK).
In the sequel it will be important to recognize that when B

is congruent to 4, ¢ to B,..., and finally L to M, then ¥ is
congruent to 4,

1.3. We shall often use two particular types of matrix cp}§
gruent to 4: i~' s

(i) The matrix got from 4 by interchanging two\rpws and
then interchanging two columns in the resulting@éf’srix; this
is, in the notation of Chapter IT, § 1.3, the matrix

i ;I AIEJ" \g )

(ii) The matrix obtained by adding Ay $imes the ith column
“of 4 to its jth column, and then adding % times the ith row to
the jth row in the resulting matrix{ this is, in the notation of
Chapter 11, § 1.3, the matrix  _ \°

(T H) AT+ H) ST+ Hyy AT+ Hy).
1.4. Preliminary Eemms ) '

Levma 1. Given o syﬁ»?netrical matrixz A, other than the null
matriz, in which aﬁ%\é'zero, there is a congruent matriz B in
which by, is not 2ero,

Proor. Ifany diagonal element, say @, is not zero, the
interchang€/of the first and ith rows followed by interchange
of the fixst/and ith columns gives a non-zero first element; the
resulbils & matrix congruent to A and is the matrix B required.
A& all a,; ave zero, then at least one @y (4 7 j) 1s not zero.

Wematrx T+H)A(I+H,),
with & = 1 [add éth column to Jjth and then ith row to jt.h]’
has an element ty+ay, = 2a;; at the jth place of the leading
diagonal. We obtain B from ¢ by interchanging the first and
Jth rows and then the first and Jth columne,

NoTe. When we consider the wider domain of abstract algobra.

it is possible for a field F to have ‘ CHABACTERISTIC p*; that is to say, for
each clement o of F ' :

ata-,.. 0 p terms
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is equal to zero.} TLemma I, which turns on the fact that
aiay 7= O
may be false in a field of characteristic 2. The diagonalform of Theorem
9% is not always attainable in such a fleld,
Roferences to the exclusion of fields of charactoristic 2 at this point
of the work arc common in theliterabuare of thesubject, e.g., MacDuffee,
p- 58, Theorem 34.1.

Trunis 2. When A is symmetrical and B is congruent to A,

then B is also symmetrical. \\
Proor. Let A’ = 4 and B = H'AH. Then <O
B = H'A'H=HAH = B. RO
Q

2. The diagonal form ¢* L

THEOREM 28. Given a symmelrical matric A b}il-er than the

wull matriz, there is @ matriz H for which ¢ = H4H isa diagonal

métriz. Moreover, if the elements of A lied field F, so do the
QN

elements of H and C. P\

Proor. (i) If a,; == 0 wo first find,a congruent matrix B in
‘which by # 0. If ayy 5 0, we 111113’:3 = A.

(i) We now have B congr,{l:éﬁf to 4 and by, £ 0. Add R
times the first column of Bto its jth column and in the result
fa,dd h times the first ‘ro,w’;ho the jth row. The resulting matrix
18 congruent to B and the 4th element of its first row is

Q byy4-hby;.

A suitable chojeg’of /& makes this zero and a succession of such
steps yie ds:}}’matrix D congruent to 4 and having as its first
oW dyy &40 followed by n—1 zeros, Since D is symmetrical

theﬁ\rfs,t-?column is also dy; followed by n—1 zeros, ’
"i\gior'eover, any matrix Z; used in step (i) has elements that
aré either zero or unity, so that the elements of B lie in the
’.ftald F. Again in step (ii), the matrices I+ H;; involved in effect-
ng the congruences have elements that ave either zero, unity

or —by,/by;; hence their elements lie in F and so then do 1;}1056 o;F-

(I+H) BUA+H,).

T W.V.D. Hodge and D. Pedos, Methods of Algebraic Geometry {Cambridge,

1047), p. 14; A. A. Albert, ;
R P4k A , Meod H iverat ;
Beience Series, 1936), p. 30. Modern Higher Algebra (University of Chicago
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(iii) We now have a congruent matrix D, with elements in
F, in which d,,,..., d,, and dyrseeer @9 are all zeros. When we
interchange the ith and jth rows (or columns), where 1, i>1,
or add multiples of row ¢ to raw J» we do not alter the zero
values of the n—1 zeros in the first row or column. We can
therefore, writing b { 4, o ]

o I)u‘—l \\\
work on D,_, as before we worked on B without affectirig)the
zeros of the first row: this will give a matrix O

ey 0 \\“
E = ,:0 €aq o ]: '\xs
0 E n—g N\ %

in which 0 and O’ represent blocks of zeros. This matrix is
congruent to 4 and may be written S

E= diag(ell,eZQFB;_?),
where ¢, ¢,, are non-zero elemqg%s’ of F and £, , is a matrix
of order #—2 with its element§in F.

The theorem follows byf’:éont.inuing the process until we

obtain AN
EITHER Q'\‘m:..ﬂiag(cu, Cagyeees Cp )y

OR MNC= diagleyy, 64,...,¢,,, O),

in which # <3z;:§ﬁd O is the null matrix of order n—. _
COROLI.‘.“&B‘ITE?‘. The number of non-zero elements in the diagonal
Jorm iq@z&&f to the rank of the matriz 4.
Pgoer. The matrices Li;, I4-H; used to effect the change
fromi* 4 to € are non-singular, and so the rank is unchanged
\throughout.

3. Orthogonal and unitary matrices
3.1. Preliminary

The theorem to be stated in § 3.2 iz a development of the
following simple idea.

In two dimensions, let x, ¥ be perpendicular unit vectors and
vV any other vector. Then

LV = (wax+(v.y)y,
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where (v.2) and (v.y) arc the lengths of the projections of v
on x and y respectively. When v and x are given, we find a
unit vector y perpendicular fo x by observing that # is a
numerical multiple of the vector
v—{v.z)X.
In three dimensions we may determine a unit vector z that is
~ perpendicular to X and y by writing
' V= (v.a)x+.y)y+@.2)2
in the form (v.2)z = v—(v.2)x—(v.9}¥.

.\{\

A
N 3

N Py

3.2, In this section we use X, to denote a vectory {tar smgle
column matrix) with real components (or elemer\si\

Trws Lary oo Eppe \ :
We use the notation (z,.y,) to denote thQ\SCALAB (or INNER)

FropUCE Tir yls [ +xm"%§s
of the two vectors x, and ¥, and we, sa:y that X, is a unit vector
if (z,.%,) = 1. We say that x,, ¥ “ave orthogonal if (z,.%,) = 0.

We say that X,,..., X,, ara.dihearly independentt when the -
only numbers A,,... hm 1oy Sa.tlsfy

?liéia—F A A X,

are given by A, =\...'= )Lm =0,

TaEoREM 29( Let x, (r = 1,...,n) be n given linearly inde-
pendent wcte{s wath real components. Then we can defermine
real constais’ oy; so that the x vectors 2, given by

"\
R\ Zy = an Xy,
~O Zy = oy X1 % Ko
} 1
W Zy = oy X0y Xp0lg3 X (1)

are Hnearly independent unit vectors which are mutually ortho-
gonal; that s to say, :

(.2) =1, {2.2)=0 when 7F#3
Moreover, no o, 8 equal to zero.

TOLT 04 T make no attempt to repeat here the details of my previous
book concerning linear dependence in & field.
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Proor. In succession, putt
Z) == kX,
Zy = ky[Xp—(21.22)24), (2)
Zy = ky[Xg—(2y. 0) 2 — (2, 74) 2, ],
and so on up to z,, choosing the £ at cach step so that the
vector on. the left is a unit vector. (This choice of & is always

possible provided the vector on the right is not zero, and ifthe
mth vector on the right were to be zero there would be 4 lmear

relation ‘ Xm+£"’£m-—1+ —|—le =0, 3:}
which would contradict the hypothesis that th,e\x. are linearly
independent.) ~\

From their method of construction, the Z ’Vectors are ortho-
gonal.i An independent proof of this fac\b' i, in outline:
" Suppose that forr, s = 1, 2, R—v].

(2,2 =0 Wh‘.en r # 8. (3)
Then, for r < B—~1, ,,‘1"'
(% 25) = knlle, 25)— . TR)(2-2,)], (4)

all other terms cancellivk in virtue of (3). But (z,.2,) = 1 and
80 (4) is zero. T e\proof by induction that (z,.2,) = ¢ when
r#sandr, ss= N 2,.., n is immediate.

The form Li} follows from (2) when we express the 2’s on the
right of ( % In terms of the x’s. Moreover o, = &, 7

3. S\Qrtkogoml matrices

D:E}mrﬂowr 16. When all the elements below the principal
o a’gagonal of & matriz are zero, we say that the mairiz is TRIANGULAR.

\.) TmEomEM 30. Given a non-singular matriz X, with real
elements, there is a real triangular matriz A for which
Z=X4
is an orthogonal matriz; that is {o say,
Z'Z =1, Z' == Z,
T Usually referred to as Schmids’s orthogonalization process.

1 The statement depends on & certain degree of familiarily with vectors in
n dimensions,
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proor. The columns of X form = vectors, say
X, With components i, Tops. e i

since X is non-singular, these vectors are linearly mdependent
Let A be

oy Mz -« Oip

O oy v o Ay
1

LI | P

‘where the «’s are the numbers that oceur in (1) of Theorem 29_.’\§\
Then the #th column of XA consists of the components, 0fy
the vector z, of Theorem 29. Denote these component8 by '

Zipr Zppyeeny Tpge  LhiED, OL writing \“
NS °
z]l - * zlﬂ H'\v :
XA =2= A A
2 Z \
nl - - W
we see that ".{K
XN
11 21 - - Fm Ay 2z -+
gz — | - o Fmzfgdltm B2 - o Zan
&\ ¢ N . .
Zin  Ram v - ~i°‘fﬂ'm“ Zn1 Zna #nn

has the element (z,.2,} inAts rth row and sth column. Hence,
by Theorem 29, . \‘\x 77— 1.

3.4. Unitary matrices
As in §3.2, usé/x, to denote a vector, or a single column
_ matrix, with’ élements

'\ Tips Tgps e T

W
but ndyw think of these elements as, possibly, complex numbers -
and Srite
\/ (x, ys) = x}ryls“" A Epr Yns i ()

With this notation, (2,.7,) is the conjugate complex of (¢s-%);
if either of them is zero, so is the other.

We continue to call two vectors X, and y, orthogonal when
(%,.%,) = 0 and to eall X, & unit vector when (x, .2, = L.

TREOREM 31. The results (and details of the proof) of Theorem
28 remain valid when the components of the vectors x, are complea:
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numbers and (x,..y,) is defined by (5) above; the constants oy are
no longer necessarily real.

In setting out the proof of Theorem 29 we were careful to -
observe the order (z;.z,}, instead of the alternative order
(25.2,). With this point attcnded to, the proof of Theorem 31
is a word-for-word copy of the proof of Theorem 29.

TurROREM 32. Given a non-singular matriz X whose eleme
are complex numbers, there is a triangular matriz A for wh@ch\\

Z—=X4 :M:"..’:
is & wnitary madriz; that 1s fo say, \“
ZZ=1I Z' =21 SO

Proor. In the proof of Theorem 30 wenneed to change only

the final step. We use Theorem 31 {mst{}e,d of Theorem 29) to
obtain the equations (1) of page 1&‘) an‘d then, with

{ N ¥
211, S T
XA=2= ..:l'. - e ],
RN Pl -+ Zaa
we see that it is now [in, vittue of definition (5)]
=, 2y Ez;x\ - 2y Zn %z -+ Can
2z = SN Ce e e

z,i?‘}‘,’ 22,,, . . Eﬂm Z_M znz . . zm’r.

which has thé-€lement {z,.2,) in its rth row and sth column.

)
4. O tﬁo{gonal congruence
405 Reduction of a symmetrical matrix to o diagonal form

Let A be a symmetrical matrix of real elements. Then it
\ ;Iatent roots, say Ay,..., A, are all real numbers.T Since

|A—2 1| == O,
the equation - Ax = A x 1

has a non-zero solution, which may be taken to be a single-
column unst vector with real elements

2
T Faps ey Tyge @

$ F. 146.
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Let X be a non-singular matrix with (2) as its first column and
7 the orthogonal matrix derived from X by Theorem 30. Since
x, is itself a unit vector, Theorem 29 shows that z; = x; and
that o, = 1: thus Z has (2) as its first column.

Asin Chapter IV, § 4.1, (3),

A, b .
7147 = |t .
o r
wherein o is a column of zeros and B is a matrix of order n— LA

. . . A\
whose characteristic Toots are Ag,..., A, Since Z71=Z aa;d‘\ '

A is symmetrical, the matrix Z-24Z = Z'AZ is also ﬁ}fﬁt’-ﬁ
" metrieal and &’ is a row of zeros. Thus \ ¥

Z1A7Z = diag{);, B}. e\
L4
We can proceed as in Chapter 1V, § 4.1, hat\now, ab each
step, using not any matrix with a given first column but an
orthogonal matrix with a given unit vec!:oi‘;és its firgt colwmn,
We obtain, in succession i \®, ’
A, = Z1AZ = diagih, B);
Ay = Y14, e\diag{hy, A, O},
where ' has latent roots X ,.::,‘ A,; and so on until we reach
| 4, E80gh A A
Also, each of Z, ¥, is an orthogonal matrixy of order n. _
Now the prodgst-of two orthogonal matrices is itself ortho-
gonal.i Accordingly, there is an orthogonal matrix X, the
product f:?,“Y,... in the ahove, for which
SRR = KAK = 4, = diagihydgo M)
?lli,siiroves '
NIERoREM 33. Given a real symmetrical mairiz A whose latent
T00ls are A, ..., A,, (necessarily real, but not necessarily all different),
theve is @ real orthogonal matriz K for which

K'AK = E-AK = diagfhy, Ao Ak

" T When y is the (n— 1)-rowed orthogonal matrix that rmakes y—1By & matri<
with A, as jts loading element and zeros olzgewhere -in the first column,
¥ = diag(l, g} is an n-rowed orthogonal matrix.

} When 22 = Y'Y — I, (2¥y(&Y) = Y'Z2Y = V¥ =1
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4.2. Reduction of @ quadratic form to its canonical Jorm
The quadratic form¥

kL ki)

Z Cpg @By {Gyy == ;)

r=1g=1
may be written as the single-element matrix

' Ax,
. . o s N\

where # is a single-column matrix with elements Zyyer, TnaDE
A = [a,;]. Thus Theorem 33 gives at once ¢\

CoroLLaRY. The orthogonal transformation = K;?,r changes

the quadratio form o’ Az into the canonical form \\“
YE ARy = Myi+hni+ .87,
where Xy,..., A, are the latent roots of A. v .
A\2 o,y

When 2"A4x is a positive-definite fopfaall the X's are positive]

and a further change of variable z,_\\«% U VA, expresses o’ Ax as
€
z§+z?;17£.;’+zﬁ.
4.3. Simulianecus reduc’t@'ﬁh of two quadratic forms

Theorem 33 also leadsfairly quickly to a well-known result

concerning the simu]{@eous reduction of two forms. This may
be stated as follows?)

TrROREM 34, ) a“a'ven two real quadratic forms ¥’ Ax and @' C%,
.. of which thed latier is positive-definite, there is o real, non-singular _
matrie H\j:qr’ which
OHAH = diagA, Ay, \,) and  H'CH = I,
wh\gh Atyees Ay, a7e the Tooks of the equation |[A—AC| = 0.
3 The transformation « = Ha transforms
e’ Ax into A S4..4N, 722
and &'COr into 224,422,
Proor. By Theorem 33, there is a real orthogonal matrix £
for which , .
K'CK = diag(uy,..., p).
The p’s are all necessarily positive.§ Put
M = diag(ui i),

tF 122 1 F. 146, § F. 135, Theoremn 40; or F. 146
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Then MKCEM =1 (4)
Suﬁpose that M'K'AKM = B. Then B is symmetrical and
there is, by Theorem 33, a real orthogonal matrix L for which
L' BL = diag{},,...,4,),
where Ay,..., A, are the latent roots of B. Also
LMK CKM)L = I'IL = L
Put H = KM L. Then H is real and non-singular: also, smce\\
CPAH=L{MKEAKM)L = L'BL,
HAH = diagy,... %), HeH=1  C
For all values of A, \\“
H(4A—CNH = diag{}; e Ay )«)
o that Ay,..., A, are the rootst of |A—CA[ =\\q
<!

£ 7
NP

5. Hermitian matrices X 2\
5.1, Preliminary detail of notation >
We take as our standard Hernzl‘pla,n formi

E Z ars r }‘ ~(a‘rs = ), (1}
F=] g=1
so that, when z iz a sm@ie column matrix with dlements 2,
Zypunsy Xy B0 A = [a,s]\t\he form is & single-element matrix

PR ,,.’ #Ax.
A change Qf\%’.;lg‘iébles x == Hy, accompanied by its conjugate
comPleX,%&gﬁforms (1) into 7' By, where
O B = H'AH.
532 Conjunctwn
AV \When the matrix B is related to the matrix 4 by a relation
B= HAH,
we say that B 18 conguwerive witE A, This relation, like
Cf?ngtuencg, is reflexive and transitive; also, when 4 is Hermi-
tian (le. 4’ = 4), B is also Hermitian,

T F. 144, Theorem 43. o
i my former hook [e. g. F. 3, 1291 I took the standard form as 2’4, with

o
I’;*:Euent minor differences of detail.

L
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In particular (cf. § 1.3),

{0 1;AL; :
effects an interchange of two rows of A followed by an inter-
change of two columns;

(i1) (I+H)AI+Hy)
is conjunctive with 4 and is obtained by adding A times the
ith column of A4 to its jth column and, in the result, adding
times the tth row to the jth row. . AN

Agin § 1.4 we require a preliminary lemma. '\ \%

Given ¢ Hermitian matriz A, other than the null ‘muiric, in
which @,y 19 zero, there is a conjunclive mairix .B W’ “Which by, 18
ot zere. \ “

ProoF. When there is a non-zero a,;, Busgiven by

LaL. o

When all a,, are zero, there iz an asz_L‘(a 7 §) which is not zero.
The conjunctive matnx \

(I'J'H:JA(I'I'I%)
has an element ¢, given by

haﬂ—i—lts ‘Conjugate complex;

either the choice A ~*\1 makes ¢;; 7% 0 or the choice k = i will
do so; and, when ’blns is done, an interchange of the first and
Jjth rows followed by an interchange of the first and jth columns
gives the mat,nx B required.

5.21, The diagonal form

TB‘{EQREM 35. Given a Hermitian matrixz A, other than the null
mathx, there is @ matriz H for which ¢ — H' AH isa diagonal

. mmx Moreover, if the elements of A lie in o field F, so do the
) elements of H and C.

The proof differs from that of Theorem 28 only in small
details,.

5.3. Unitary conjunction

Let A be a Hermitian matrix. Then its latent roots, S&¥
Agseees Ay, are all real numbers.t The, equation

Ax = A x @
T F. 158, Example 14,
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has as a solution a gingle-column wunii vector with complex

ements
¢ . Zyy Fgp, e Ty (2)

Choose X & non-singular matrix with (2) as its first column and
Jeb Z be the nnitary matrix derived from X by Theorem 32.
Proceed as in § 4.1 and we obtain :

TruorEM 36. Given o« Hermilian matrid A whose latent roois
re Agyeen, Ay (necessarily real, bui not necessarily all diﬁerent}‘,\\\
there is @ unitary matriz K for whick *

K-1AK = diag{d, Agyeens An)- O

EN)

L 3

The corollary analogous to that in § 4.2 follows fa:t{iiﬁée.
The unitary transformation © = Ky changes e Hermitian
form & Aw into the canonical form \M
FE AR — §KAAK)y = 3 By B MG
where Ay,..., A, are the latent roots of A;\x\:

\.

5.4. Simultaneous reduction of twp Hermitian forms
Finally, as in 4.3, we can pt;gi;vé‘

THEOREM 37. Given tw Hermitian forms & Az and &' Cx, of
which the latter is positivesdefinite, there is a non-singular matrix
H for which AN

I AH S iagy, Ay Ay)y  HOH =1,
where Ay, Az,\},; are the roots of the equation |4 ——_AG | = 0.
The tr%gformation x — Hz transforms
QO FAx o MEHutTAnZats
and~\" FCx info 2,4+ 2

NS

N\ 5.5. Note on Theorems 35~1
It is & common practice in the literaturs of the subject to prove
Theorems 35-7 at the same time as one proves Theorem? 28, 33, and
84 by using a special notation H’AH which is interpreted to be
I'AH when 4. is symmetrical,
H'AH when A is Hermitian.

The resulting brovity has its advantages, bub I have alway .
to deal with the real quadratic form and then soe wha.:t minor adjust- -
ments are necessary to the Hermitian form.

ays preferred
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6. Repeated characteristic roots and rank

6.1. Symmetrical matrices

Let A be a real symmetrical matrix with latent roots A,,..., A,
and let A; be an 7-ple root. Then, by Theorem 33,

KYA—AK = diagly—A,.., A,—A).

When X = A, the latter matrix has just » zeros in the dlagonai
and so, since multiplication by non-gsingular matrices le Vel
rank unaltered, the rank of 4—2, I is n—r. The equatioh,

AXZ/\X O

will have r linearly independent solutionst xl,\z ’9; each of .
which is a single-column matrix. ¢

The same result holds good, mutatis mutandw for repeated
roots of [4—CA| = 0 and linearly 1ndep@dent vectors X satis-
fying Ax = ACX. AN v

An slternative treatment} of the wholo matter is to prove directly
that an »-ple root implies r lmearl’y mdepcndent solutions and then
make use of this fact in detennmuig the matrix K of Theorem 33.

6.2. Unsymmetrical matrices
The result iz quite ﬁerent for matrices which are not sym-
metrical. Let us take for simplicity, an unsymmetrical matrix
A whose classiq@l'canonical form is Cy(«}; then, for some non-
singular mzajizr:\in. T, « 1 0
\ T-AT =0 o 1
\ ) ) 0 0 «
ang\ ‘the equation [A—AI| =10 is (A—a)® = 0. The matrix
,c‘i\—ocf 15

: 01 0
O 10 0 1] 71, )
0O 0 ¢
whose rank is 2 and so the equation
Ax = ox 2)

has only one solution. Similarly, when C,{«) replaces Cyler) WO

% Cf. Chap. I, § 0.
1 J. A.Todd, “A note on real quadratic forme’, Quart. J. of Math. {Oxford), 18
(1047}, 183-5; also the paper by W, L. Ferrar which folows it.
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seach (1) with a matrix of rank »—1 and equation (2) again
has only one solution.

The actual linear equations that make up (2) show how in-
evitable the result is. Take 4 = Cy(a) and X = {x,,23,%,}. The

gcalar equations represented by (2) are
(i) o 4%, = oy
(i) axpt-xz = oy, p
O
(ii1) oty = oz ' _ A N
From (i), &, = ¢ and =, ig arbitrary; from (i), 5 = 0; ar%d‘(iﬁ;)‘
is automatically satisfied. The only non-zero solutign™1s &
multiple of x — {1,0,0}. ’x..\\ )

AW

Considering now a more complex canonicalfors, we see that.

O = diag(Cyle), CBy Y
when » > 1 and a % 8, ¥,... gives onlyff@e solution of 0X == oX,
while a formy \

0 = diag{Cy(e), GaN Cyle), CylB)y--}
gives three linearly independ”éﬁt’ solutions of Cx = o because
the matris (—al is of }‘{ﬁk n—3.

7. A direct proof of Theorem 34

The theorem 1d be proved is this:

Given two,n@' 'éymmetr-ical matrices A and C, the latier being
such that thdguadratic form ' Cx i8 positive-definite, there 4s @
mn-séfa@l&% matriz H for which

&Y BAH = dingQyn),),  HOE=L

' <‘E’fmﬁ Agsenes A, are the roots of the equation |A—Al| = 0.

The proof given in § 4.3 is somewhat indirect; the Pmojf now
to be given depends upon a direct step-by-step derivation of

the matrix H. The details have some pinor interest of their

" own,
1 Aform © = disg{0y{a), Cpfedsmees OrlBhmd
will give O = diag(C,{0), CfOers Ol dn

the ramks of C},(0), Cy(0),... are p—1; g—1,..., and the ranks of CB—ohm

e r,...,
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7.1. Preliminary lemma

Lemvia. Let A, Z be square matrices of n rows and columns
and let the r-th column of Z be the single-column matriz z,. Then
the element in the r-th row and s-th column of Z°"A Z is the single-
element matriz z, 4z,; in symbols

Z'AZ = [ Az,)

Proor, We may write '\\\
Z = 2+ 2pt .ot 2y, m:::;:
where each 2, is a single-column matrix aecompanégg £bgr n—1
columns of zeros, and ) N 3
Z' = 2ttt N

A
where each 7, is a single-row matrix accompanied by n—1 rows

§

of zeros. It is now obvious that <!
O
BAZ = (Gt ) Al AN 2,) = [ 42].
7.2. Sehmidt’s orthogonalization process
Let C = [¢;] be the ma@pt%'t;f & positive-definite form, X, &
vector with components »_
=1,
Define (z,.3,) to bé\~
N 2.0y, = Z Cij Xip Yo
L

. N .
Then, s_.lncxei\a,xs symmetrical and ¢y = ¢,

\O~ (@ Ys) = (s %)-
O q
qug\y that x, and y, are c-orthogonal when (z,.y,) = 0 an
y&call x,. a unit vector when (x,.%,) = L.
< Given a set of n linearly independent vectors X, with real
components, we define another set z, by the equations

z, = I X, Zy = ko[ Xy (2, . ¥2)Z1 ),
and o on (as in {2) of § 3.2}, ¢hoosing the % at each step s0 that
the z is a unit vector. {When x, is itself a unit vector, by = 1]

These unit vectors are linearly independent and are mutually
c-orthogonal [of. § 3.2]; that is

2 Oz = 1, 2,02, =0 (r # 8).
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We may rewrite the above equations in the form
Z; = ay Xy, Zy = oy ¥yt esXa

and o on, the o’s being real and ogy being unity when X, is 2
unit vector. Thus, given a real non-singular matrix X, there is
(cf. Theorem 30) a real triangular matrix 4 such that

Z=XA
has columns Z,,..., Z, Which are mutually c-orthogonal umit \\’\
veetors. :::"
By the lemma of § 7.1, N
7207 = [z;, CzS] = I, ,'\'\h;'

“

sinee the vectors are mutually ¢-orthogonal unit&%ﬂbrs.

7.3. First step of the reduction ,x;\\';

The roots of the equation |4—AC| s(0jare necessarily real.t
Since [A—A, €] = 0, the equation | &

N °
Ax = }‘1,0)(
ha_s a non-zero solution which:ii:iay be taken to be a unit vector
{in the sense of § 7.2) XL..&\\

Let X be a non-sin}giﬂlﬁr matrix with x, as its fixst coburn .
and Z the c-orthogenal matrix derived from it by the process
of§ 7.2. Then Z his a first column Z satisfying

;s{\~ Azy = 2027, -
By the Jethma of § 7.1, the first column of Z'AZ i
. :»\:’ :" Z-;,AZI,
Sor/on using (1), A, 2, C'z,. Since the z_. aTe mut_ua,lly ¢-orthogonal
unit, vectors, this first column 18
Ay 0, 0 . O
The first row of Z'AZ, which is & symmebric
also be A, followed by n—1 zeTos. Thus
Z’AZ == diavg()ll, B},
i F. 145.

al matrix, must
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where B has n—1 rows and columns. Moreover,
207 =1, ‘
Now the roots of |A—AC| = 0 are the same as the roots of
|Z'(A—AC}Z| = 0; that is, they are the latent roots of
diag(A;—A, B—AI,_,),

where I, , is the unit matrix of n—1 rows and columns. Henc,{
.» A, are the latent roots of B,

7 4. Completing the reduction X !
Since |B—A, 7, ,| = 0, there is a non-zero umt‘}' Sobtor Ya,
ith element RO

Wk cloments Yoo Yam o Yoo Ky \\ (2)

- for which By, = A,%,; there is then an ort.hoéonal matrix ¥

(of order n—1) having (2) as its first coluqm The first column

£ Y'BY |
? ® o Bys = 4,054

Thus, since ¥ is an orthogonal m@tr)x, the first column (and
row, by symmetry) of ¥'BY is }followed by n—2 zeros.

Lot L =diag(1,Y).
Then B
1 A . 1 .
L(ZADL =4\ !
S NP K
uQZ[% .
QO Y’BY}
2N = diag(A, Ay, D)

where, hy \&he previous argument, the latent roots of D are

Agyeeny \% Moreover,

N NZ'CZ)L = L'IL = 1.
~ ﬁhe Pprocess continues step by step to the final forms
, II’AH _ dlag()tl n)’ H CH - I

7.5. Hermitian forms

Theorem 37 admits a similar proof; the definition of (%,.%,)

related to the Hermitian form ¢y &y %; follows the pattern of
§ 3.4.

§ ‘Unit-vector’ and ‘orthogonal’ here bear their nsual meanings ; the positive- -

definite form o;;®; 2; has been replaced, since Z°CZ = I, by the simpler forst
i ot B SR L



CHAPTER VII
MATRIX EQUATIONS

1. The minimum equation
We have seen that a matrix 4, of order n, satisfies its charac-
teristic equation; that is, if
it
A = f0) = X PN, N
" =0 \\
then flA)y =3 p, A7 =0. Oy
r=0 N “
J
Further, we have proved that, for a given matrix 4,\there is
a polynomial 2(2) of minimum degree m such that/, N
i) k) =0, O
{ii) the matrix 4 cannot satisfy any equdtion of degree less
than m, O

(iiily A)) = E,, the nth invaria;nt:f@&or of Al—A.

Before going on to other topic.s&\iﬁe show that the results
about functions of matrices developed in Chapter V render
intuitive the facts concerning this MINIMTM FUNCTIONT which
we established in Chapteg 'I\V,’§ 11.

Leb 4 be a given matuix - - :

e a given matux, O — TAT- its classical canonical
f‘{}'m: and g(A) &nyQ]_jo}}momial in A. Then
o 9(0) =TT

and g(4) = QiPand only if g(C) = 0. Now, when

'\\i": ¢ = diag{Ci{x)--}s
A .
N\ g(C) = diag{Gple)s.-};
\; gla) gl . . gEH)f(k—1)!
bere Gy — | 0 9@ - o @FPEE=DH @
0 0 . g(o)

;Phus E}(O ) = 0if and only if each G(x) is & null mairix and this
ts 80 if and only if g(a), g'(a),..., g% Do) are all zero; this in
urn happens if and only if g(A) contains (A—)* as & factor.

1 Sometimes called :
: the ‘reduced characteristic function’ or the R.C.F. {of.
. Turnbull gnd Aitken, loc. eit.). !
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Thus when ¢ has a Segre characteristic

[(xy...2)(uv . w) ... ]
inwhichegy .. C,e<Crv<... <Lw,...and

O = ding{C,la)ors O, Cul By Cul Bl G013,
g(C) is the null matrix if and only if g(A) contains
A—aFQA—B)*... A=) O
ag a factor. N
Since E,, the nth mvarlant factor of AT—C' is gwen (Chap

w.§8by g _(A_a)zo« Bye... A=Y

the same result is expressed in other WOI‘dS if Qe say that

g(4) = 0if and only if g{A) contains £, as & faci\ (cf. Theorem

19).
\\,

2. Solutions of a given scalar eq){a\tlén
We suppose given a scalar polyania,l
9(@) = @+ g1+t gy
say, and we seek matrices 4 hat satisfy the equation
\\‘?(A) = 0. (1)

We suppose always th\; by ordinary algebra, g(z) has been
expressed in the staﬁiard formt

o) = QENQE... (Qu)}: 2)
in which ne\Q () has a repeated factor and no factor of one
@ is a f@fpr of any other Q.

»I\Solutwn 1 classical eanonical form
~ :We seek classical canonical matrices ¢ for which

A 9(C) = 0, (3)
Let Qu(7) = (T— ) (Z—otyg).... )
Then, as we saw in § 1, & matrix

C = diag{C,(M),..} (5)

cannot satisfy (3) unless each A has one of the values
we (r=1,2,..,k 86=1,2,...).
t W. L. Ferrar, Higher Algebrg (Oxford, 1948), p. 229, Theorem 40.
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Further, the form  C == diag{Ch{o),..} _ (6)
where now the A’s of (5) are restricted to be roots of g(x) = 0, will
satisfy (3) if and only if p < r for each submatriz that occurs in
(6). Forif p <7, g(A) containg {A—a,,)® as a factor for each
p and a, of {6); while if p > r for any one submatrix of {8),
#(A) containg A—o,, only to the power r and the corresponding
() in § 1, (1} cannot be a null matrix,

Thus (8), mth P < r at each entry, gives the general soluton\

of (3); further the general solutiont of O\
g(d) =0 O m

_1 P

is given by A= T0r \\ \

where C' is the general solution of (3) and Z 13\3311 arbitrary,
non-singular matrix of the same order as CANY
By taking g(z) = @,(x) in (2) we sce thit/when the equation
9(x) = 0 has no repeated root, any cangmcal mairiz C satisfying
§{C) = 01is @ purely diagonal matriz [for in (8) the only possible
value of p is then p = 1]. \

X

2.2. Elementary examples o\ )

Take g{x) = gt
The roots of 2—1 = "I}%a 41 and the general solution of
AN =1
i WO ding{Cu(:1), Ci1),0}
\ = diag{2-1, £1,..}, - (8

_ there bethgas many entrieg as we need to nake up the desired
order,Of\C' and the signs being completely arbitrary.
Thﬁ general solution} of 42 = I is given by

<Q A = Tdiag(+1, £1,..)72
where 7 is non-singular, but otherwise arbitrary.
Again, take glx) = (@2—1)%

The general solution of g(C) = 0 is
¢ = diag{Cy (1), Cof:1)sds

1 Tf ¢ is the canonicat form of 4 and g(4) = O thag\e y(GJI
t If ¢ is the canonies] form of 4 and 42 = 1, then
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there being sufficient entries to make up any desired order for
(. For example, when C is required to be of order 4, one
solution of (C*—1)* = 0 is
‘ ¢ = diag{l, —1,C,(1}}.

It may be noted that

. 12
C _-dlag[I, 1, [0 L

80 that CZ—I=diag[0, 0, [g 3]] Oy

The square of 02— is zero, though, of course, Q;‘.—I is not
itself zero, D

Finally, take glx) = a2,

The only root of 22 = 0 is a repeated roe{b,,?(,ro The general
solution of 0% == 0 is, therefore, OO

0 = diag{C,(0),...:05{0),...}.
The general solution of the qugtwﬁl
o

o\

. 0 1
A= T ) s e L
d‘@fgﬁ” : [0 0] }

there being as many entries of cither kind as we wish in the
diagonal matxiX/and T being an arbitrary non-singular matiix
of the sa,me{hrder as the diagonal matrix. The matrix ¢ above
will be}(se]f the null matrix unless it contains a C,(0); if € #£ 0,
and C’l\_ 0, the form ' above must contain at least one Cy{0}-
" JTl:re reader will see for himself that the general solutions of’
\Am = I or of A™ = 0 along these lines is merely a matter of
writing out the details.

is given by

2.21. Idem-potent and nil-poteni matrices. A matrix whose
square is zero is said to be NIL-pOTENT. A matrix A which

satisfies the equation 42 = A4 is said to be IDEM-POTENT; §ince

th
e roots of Pz — 0O

are 0, 1 and are not repeated; the general solution of
Q0 =0
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is 0= dia‘g{ol(o)_)"-:Ol(]'))"-}
and of Az—A4 =0
s 4 = TOT- = T diag{Cy{0)es O} T

2.3. Solutions in rational canonical form
We recall from Chapter IV, § 10, that when

p) = XA N1k Q&

0 1 0 . . <1:

0 0 1 . O
and P= L. e e . . N Y

0 0 ¢ ’

—Pr TP — P2
the matrix P is said to be ASSOCIATED wgﬂ the polynomial
A) and {
Pty on AT—P| = pA)C
We proved, in Theorem 17, that W‘hen a square matrix Ais
given and the invariant factors ¢ other than unity, of Al— A are
. s()‘)s s-t-l‘@')s arry E ()‘)’
the matrix E: \ﬁ’iag(Ms, I, (9)
where M, is the matnx assoclated with the polynomial E(7),
is a transform of @ that is, for some matrix 7',
XN A= TET
Give: 15(31371101301&1 g(x), we seek a matrix B, of type (9),
that sl\% be of a given order M and satisfy the equation
o) g(E) = 0.

\/ When we have found such a solutlon,

will satisfy the equation g(d) =
Now, as we saw in § 1, the matnx g(B) is zero if and only if

~ g{A) contains E.{()) as a factor. Thus, t0 obtg.m a solution of
tYPB (9) that satisfies g(£) = 0 we take :
E,(A)to be 2 factor of g{A)

E, ;A tobea factor of B,(A)
B, 4 to be & factor of Bp_i(Ah

{10)
the matrixA = TET!
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and so on; let E, be the last E, ;. to be other than unity. Then
the matrix B = diag(M,, M, y,.... M,)

(i) a matrix in rational canonical form,
{ii) a solution of the equation g{X) = 0.

is

The order of E is the sum of the degrees in A of the polynomials
E(X),..., B,(A). Ifit is possible so to choose the degrees of these
factors that their sum is M, we have then obtained a solutfkoﬁ
of the order required ; otherwise no solution in rational ca.nonlcal

form is possible. p
For example, take F to be the field of real numbers and
glx) = 2+ 1. \’ (o)
The matrix associated with \%4
PR = X402+
i p_[0 D
1 g

This matrix P, of order two, ,satrsﬁec; the equation PI =0
So too doss the matrix, of @rdér 4, obtained by taking
n(?‘) = A2+1! A\ &, 10‘) = A*+1, Eﬂ.—2 = 1:
this matrix is \ ) @ = diag(P, P)
and @Q*+1I = Opbut, since A*41 has no linear factor in the
field of real mgmhers, it is not possible thus to find, in rational
ca,nomcal'erm a matrix of odd order} that will satisfy
\: ) Xy ] =0,
Thb whole process, though theoretically complete, is much
. fiote tentative and ragged than the corresponding solution in
_tlassical canonical form.
2.4. Note on odd and even order
In reflecting on the difficulty of obtaining directly & third-

order matrix to satisfy X2 = —I one is tempted to put in an.
extra factor and to solve X(X2+I) = 0. This would lead us
to take B () = XA

1 The method gives a matrix of odd order satisfying g{X) = 0 only if glw)
has, for factorizations within the field F, a factor of odd degres.
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0 1 0
and E=1]0 0 1.

0 —1 0
The reader will find, however, that E satisfies B = —F but
does not satisfy £2 -= — I This is necessarily so; for E2-1-1

cen be zero only if £, (A) is a factor of A1 and therefore, as
socn as we putb in an additional A and take #,(A) = AA™-1},
we make it impossible for &,(A) to be a factor of A2 1. ; \Q\

3. The equation g(X} =
Let 4 be a given square m&tnx and ¢ = TAT- its, clﬁsmcal

canonical form. We seek a matrix X to satisfy the{e\qu&tlon
g(X) = AN (1)
Our first step is to put X = 7Y 7, so th\Qt(li becomes
Pog(V)T = 1-1gRC
that is g(¥) = ¢ » (2)
We ghall indicate, rather t];l&n deve]op to the last detail,

methods of determining whéther (2) has a solution and of
finding the solutions When\they exigt.t

3.1. Rutherford’s mqﬁ&}d : ]
We have to find Foko that, g(z) being a given polynomial in
zand C a given, qa,nomcal form,

x.\:‘ }.. (Y) —
“Let Z\Q@ Jany canonical matrix, say
R 7 = diaglC),} @
lheh g(Z} is given by
vV g(Z) = diag{G.(M),.--}, ®

where @A) =

r=1{3){r— 13!
g(Pf) ?{A.) - 9‘ ()/(? _)] (%)
0 0 . . g(é\)

The matrix (4) ie not a classical canonical form,

} €.C. MacDuftes, The Theory of Motrices (Chelson Publizhing Co., 1948),
P 96, gives soveral references. .

save in very
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special circumstances. Let its classical canonical form be @.
Then, for some non-singular ¥,

G = FglZ)F = g(FLF-Y,
If, by an appropriate choice of the A’s and s in (3) we can
identify @ with C, we shall have found a matrix ¥ = FZF-1
that satisfies g(¥Y) = €. Ifsuch a choice is impossible, ¢(¥) =
has no solution. R\

When g®(A} is the first of g'(A), g"(A),... to differ fmm _2efo,
we denote the classical canonical form of (5) by {g(?e b 1n

this notation G = disg[CgM)} -] ; \\. (6)
and solutions of (2) are sought by idenﬁifyﬁ}é’ (6) with €,
remembering that C{«), is simply C,(x) wheh'k = 1 and that,
when k& > 1 and we write r == pk-+gq wﬁ‘}{ 0 =X g <k, Gl
consists of Cp(x) repeated k—g¢ timesjand €, (o) repeated ¢
times. QY

Further details, including a worl‘\ed example, may be found
in the original paper by D. E Rutherford I

3.2. The equation X? & A
We consider | x\ Ye=(,
where €' is the qlaés}ca] canonical form of 4, say
W27 C = diag{Gp),) ™
METHOD\I” Provided that ¢ is non- smgular our work on
functm(ls Jof matrices ensbles us to write down a value of ¥-

As ji\Chapter V, § 8.5, let

~O" B ot fa(p—1)pe?

) . & x—1
D T I O
0 0 0 T
there being, of course, r rows and columns. Then one golution
of Y2 = (' is given by$§

Y = dla,g[{O,,(p)}*,]
t Cf. Chapter V, § 9.

1 Proc. Edinburgh Math. Sve. (2) 3 (1932), 136-43.
§ ¥or a more general sclution see § 3.3 (post).
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This throws no light on what happens when O is singular,
but it does show that
Qiven @ non-singular square Mmatrix A, there is @ matriz X

whose square 18 A.
Mermop 2. This follows Rutherford’s method and when ¢
is non-singular gives, in fact, the same solution as Method 1.
(i) Let € be non-singular; then no z in (7) is zero.

A
Pub 7 — diagfC,(Nu), - ,is).\\'
Then 72 = diag{Z, ().} ke

g 29 1 . \\~ )
where Zy=1° ¥ 29p CT LN \" 9

o 0 0 . A

4

Since p = 0, the canonical form of (9)\i§ Q,(,&) and the canonical
form of Z2 is diag{Cy(w),..}. 1f F 18 a matrix which transforms .
72 into its canonical form, that ig“'i’_’ﬁ # is chosen so that - -
FZRF! g:@iﬁg{ﬁr(p},...}

and we pub ]izj?"—l =Y,
then e :\a’jﬁzéﬁ*—l — diag{C ()}
and Y satisfies thé\equation ¥* = C.

To show thatdihis gives the same solubion as Method 1, we

proceed th\lggls..’
The ca@ldﬁical form of

O g1 s dglGOi-d

_ 'beitggﬁ’se no g is equal to zero. Tet

/g (] = FdinglG)-)
where Z is defined by (8). Un squaring this,

diag{C, ()} = FZAF .

That is o gay, 2 matris F which changes Z* into its Eaa,nor!jcal

form diagfCi(),...} makes FZF-Y, which is the solution given.

by Method 2, equal to di&g[{O,(p]}*-,..-], the solution given by

Method 1.

5378 .

(10)

F1l= FZF_l,
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(it} Let C be singular, say
¢ = diagf{C,(9),..., C,,(0), C (@)} (11)
where C_(ut) is a typical submatrix with p 7 0. Leb {C(uP
be defined as in Method 1 and let
Z — ding[Cy(0),- Chosr(0)oes (Crlpsl}bonn ],
where 2r denotes a typical even, 2s-+1 a typical odd s fix,
Now the canonical forms of the squares of Cy,(0), Cpe (@) aTef
ding{C,(0),C(0)),  diag{Ci(0),Conn(0)} O
respectively. Hence, there s a solution of ¥'® =f.\£2"@f)°, and only
if, in the form (11) for C A\
(i) m is even i
and (i) the suffixes pq,..., py can be arr&?@zﬁ in pairs in such @
way that the fwo members of\{:apﬁ ‘pair are either equal or
differ by unity. O *
As a simple example, let gs,@éﬁérmine a matrix whose square
fsequal 0 ¢ . diag(C0), o), O} (4 # 0.
A
Let Z = d}a‘grcs(o):{cp(n}*];

£ \\..~ 6 0 1
[0 0 } opm].
0o 0 0

then - Z&> diag
\&
N ) , .
The finst ‘submatrix needs only a collineabion, interchange of
thez i two rows and then of the first two columns, to identify
Z%with C: to obtain a solution of Y2 — € we subject Z to the
~same collineation and write

A
0 0 1
¥ = diag”il 0 0], {Op()\)}}},
0 0 0

the first submatrix being the result of interchanging the first
two Tows and then the first two columns in C5(0). A direct

t Chapter V, § %, wsing k =2 and (i} p=r. ¢= 0, (iiyp=sg=1°
the result is evident at once from the chains of non-zeros in (9) when g = 0
and (i) » ia 2¢, (i) ris 2841,
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verification gives 0 0 0 .
y? = diag{|0 0 1}, A
0 0 0

= dla’g{cl{o)’ 02(0)!03)(?‘)}’

In a way similar to (i} above we can find conditions that,
given a singular matrix O, there shonld be 2 matrix X for which
Xk = (; when C is non-singular, one solution of X* = ¢ can \\’\
be written down by using & = 1 {k in Method 1. O

Mpriop 3. Let  [M—A4]=FR)- o
Then it can he proved, by the processes of ordm@IQZ"h;lgebra,
that, provided the constant term in f(A) is nop{eﬁ;, there is
a polynomial g(}) for which {g(A)}2—A contains ) as a factor.
There is then an identity PN :

| fgp—) = D
C\Y
and, sinee f(4) = 0, it follows that
A= 0.

The method is given in greater detail in at least two well-
known books.{ \\\ -

3.3. A general soﬁz’c@'d}a of g¥)=C

Suppose that we have found any one matrix ¥ that S?Jtlsﬁes
the equationg{@) = C. Let K beany non-singular matrix that
commuteg\i?&s?i‘bh ¢'; then KC = CK, that is

Y

N KOK- = C.
Pu\z—;ﬂ}: EYEK-t. Then
S \¥; g(M) = Kg(Y)K'—-l — KC_K—'—l =

\i,md M is also a solution of the given equation.
3.4. The reversion of & power series
One solution of the equation
R I SRS
# L. E. Dickson, Modern Algebraic Theories, P- 190; W. V. D. Hodge and

D. Pedoe, Methods of Algebraic Geomeiry {Ca.mb_ﬁdge, 1847), pp- 96, c'il :f:.' ok
 Tho goneral form for such & WAL K is given by Tumbull and Aike0,

loc, cit., pp. 146, 147
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can be obtained by expressing ¥ as a power series in U'—g, I
provided g, # 0-and the latent roots of C'—g, I are sufficiently
small (cf. Chap. V,§ 11.5). This solution tallies with the solution
given by Rutherford’s method (§ 3.1) in the following way:

If g, # 0 and g{z) = g, 2-F...4+G,, 2™, then

g{z) =g, +2px+... and ¢'(2)£0

when |z] is sufficiently small. Let XY
C—ygo1 = Z = diag{C,(0),...}, e .\
and take X = diag{x,...}, where x is the root of “\
12+ Fg,am = A p \~

. ()
which tends to zero as A tends to zero. The ca,lic}nica,l form of
the matrix C g X Aga X2 g, X

is then also diag{C,(A),...} provided ea(-h g}x) +# 0. Thus F can
be determined so that \$

Fig X+t XMF 1S 7 = diag{C,(A
and ¥ = FXF-1 gives g(¥) = 6‘

Equally, as Rutherford’s! ‘thethod shows, there may be no
solution once we relax ‘bhe condition that the latent roots of
C-—g,1 are ‘sufficie ﬂy small’; for when we relax this condi-
tion, g'(x) may becbme zero and the canonical form of

,’\','" 91X+ —l"ngm
become defe@ent from the canonical form of C—g, 1.

4. Sca@r equations deduced from matrix equations

Iti¢ well known that a square matrix 4 satisfies its own
~characteristic equation. One method of proving this can be
\generalized? =0 as to prove '

THEOREM 38. Let C,,..., C, be given n-th order matrices, antd
A an n-th order matrix for which

Cy AR+ 0 AR, £Cp = 0. (1)
Let P(A) be the expanded form of the determinant
Gy Ne- O N1 LG 2
Then Py — 0. O T ¢

t MacDuffes, loc. cit., pp. 17, 18.
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We defer the proof until §4.1. When k=1, Cy=1I and

g, = —4, equation (1) is simply
TA—A =10 _

the determinant (2) is |A —A|, and PQ)=10 is the charac-
teristic equation of 4. Thus Theorem 38 contains, as & parti-
cular example, the fact that any square matrix satisfies its own
characteristic equation. A

Tn its turn, Theorem 38 is a particular example of a still mqré;\\ -
general theorem, which we shall now prove. <L

4.1. Phillips’ Theorem A

This theorem was first proved by H. B. Phillips,} ﬁho“a;pplied
it to establish other theorems. 1 know of no Iajerapplications,
but the generality of the theorem is, in itselds striking. '

TarorEM 39. Letd = [eigtseens P = [pg;j‘b'é n-thordermuatrices
and let A,..., p be scalars. Let A yoes ?‘ﬁe matrices that are comt-
madative with each other and leb” e

A 4. PP =0. (3)
Then A’,..., P' satisfy the n-ﬂqéﬁégree equation obtained by writing-
|ag Wt +pacpl = 0 oW

and, in the expandg{fm of the determinant, ?‘6}?;&0&%9’ Asees P
by the matrices AN...s P, - '

Proor. Lot be the nth order imatrix which has unity ab
the crossmof\'t;}ie sth row and kth column and zeres elsewhere.
Then §E15 By = L By By = o (¢# {9
NO.WZ;\ 4= 2 g5 Bt '

) . i
$\ and so {3) may be writfen as :
% Eglag A+t Pis Py =0.

Multiply this {(on the left) by Bppsees Ban in turn and use (5):

" the resulis are | .
En(afllAt‘i'---‘}‘Pn P’]+--°+Em(amA'+---+p1ﬂ i,) i 0,
B o oy Pt Baaltan A7 y=0,

-

Bisi{an At Pm P’)Jr."'-i—-Elﬂ(a'ﬂﬂA’+"'+pﬂﬂP )y = o -
g Amer. J. of Math. 41 (1919), 206-78-
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Let A denote the polynomialin 4”,..., P’ obtained by expand-
ing the determinant Ayt oot pPi]

and replacing A,..., p by 4’,..., P’. Then, as in scalar algebra,
we obtaint from the above » linear equations in #,y,..., &y, the
results g A =0, H,A=0, .., E,A=0. (6)

Now in (6) A is a matrix: the first equation, Fj; A = 0, im-
plies that the first row of A iz composed solely of zeros; 1:1;@:
second, B, A = 0, implies that the second row of A is all zétes;
and so on. Hence, by (6), every row of A is a row of zei“és and -
A is the null matrix, which proves the theorem. — ~J X

Theorem 38 is obtained by writing 4%, A"—l,..,;zt‘l'\\in'place of
4, B',..., P’ and G, Cy..., O in place of 4, B P.

5. A general type of matrix equation,\J
Let 4,,..., 4, be matrices having m‘r@ws and » columns and
X a matrix of » rows and columng),Then a type of matrix
equation is » :
L
{ZUA{%% b= 0.
Tts solution has been considered by W. E. Roth.f We shall not
develop an account of the various types of matrix equation
which have yielded'técbrba.tment, but refer the reader to Roth’s
paper and to the account of matrix equations given by
MacDuffee.§ \@ar own treatment of the topic, in §§ 1-4, has
been limited be what comes easily and naturally from the work
of earlie{:(lﬁapters.
O\
6. é:ﬁote on linear equations
~(The proof given by H. B. Phillips of Theorem 39 leads one
\$6 consider a set of n linear equations
X Ap+..+X, 4, =0, M
XlAn1+"°+an,Ann = 0,
T The fact that the matrices 4’,..., P/ are commuteative among themselves

enables us to multiply by the ‘cofactors’ of the first, seeond,... columns 0

‘coafficients’ in the linear equations and add just as we ghould do if 4% P’
were gealars,

I Trans. Amer. Math. Soc. 32 (1929), 61-80.
§ The Theory of Matrices (Cholses Publishing Company, New York, 1946}
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where the 4, are X » matrices that are commutative among
themselves and the X, matrices of m rows and % columns. This
set of eguations, with its obvious analogy to a sef of linear
sealar equations, sets the problem ‘How far does the analogy
go?’ This problem may repay investigation, but I have not
pursued it here.}

The one easy result that a first consideration of the problem ~
gives is this: SN
Let A be the matrix obtained by writing A4,, for a,, in. the’
expanded form of the determinant |a,,|. Then, if {1} is s&@igﬁed
by a get of matrices X,,..., X,, containing among thetx\ﬁl@nearly
independent rows, A = 0. The proof is 1mmed1&t\e\t e equa-

tions (1} imply '\

X A=XA= .. = X.,,,Az,ﬁp, (2)
and, if ¥ is the nxn matrix formed bj\dny = rows selected
from among the mn rows of X,..., \\(‘2;) implies

YA = a, \

if the n selected rows fomung X are linearly mdependent ¥ has

a reciprocal ¥-1 and A = (.

T It might be suitable as }f a B.Bc. thesis: it iz unlikely to yiold resuita

of gufficient weight for a \;{9{ tate thesis.

N4
»



.CHAPTER VIII
MISCELLANEOUS NOTES

1. The resolvent of a matrix
LExr 4 be a given matrix of order ». Then the matrix

BQ) = (A—4)7, (1)
where A is a, Sca]az; variable, is called the REsoLvENT of A. Tﬁiﬁx\
function and a related function using /—AA4 have been exten-
sively used in the study of matrices, linear oquations) and
bilinear forms. Our own development of these suk{je‘e.ts does
not use the resolvent. It may be of interest, howéver, to note
some of the properties of this function; the be3€ known are

(I} When |A| is greater than the absolut@glue of any lafent

root of A 4
, 1 1, A A2
e = s . R I 2
=4 A et } )
(II) Provided that A is not eguﬂ’ to a latent rool of A, the
matriz (Al —AY1! may be wmttenas a swm of partial fractions.
When E,, the nth invatiant factor of Al—4, is of degree
m (< ) in A and has m'cﬁs\tinct ZeTOS a,..., k the partial fraction
. ¢ L\
form is ‘ A _ R, B, o)
POy S Rl w

- ¢
wherein RC‘,’.'.\:{;.RK are polynomialg in the mafrix 4.
When K, has repeated zeros, the partial fraction form is that
’\\st“with repeated factors in scalar algebra; for example,

afssociai
T AY "B, = QPP (A —r),
Vo 1 R, , B, , Ry , Ry
_ tra & & i - 4
M—A*A—a+(A—a)2+(A—a)3+h—B+ ’ ®

where each numerator is a polynomial in 4.

(IIL) When «,..., k are distinct, as in (3) above, each numerator
in (3) is an idem-potent matriz (3.c. X2 = X) and the product of
two different numerators is zero; for example,

R:=R,, R, Rﬁ =0,
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This 3s sometimes referred to as ‘the orthogonal property’
of the numerators,
- (IV) Let y be a given single-column matriz, A a given square
mairiz, ond X @ scalar. Then the single-column matriz X satis-

- fying X—Ax =y
is qiven by x = (A\[—4)y. )
(V) When . R = A—4)Y, ."\\\'
(A— )R B(s) = R(u)—EQ). A9
L1, Proofof (I) | AT
When 2| < Al \\\\ 3

1 z 2
—z X[1+X+F+m}"\ \
Hence, by Chapter V, § 8.1, if the latent ;'\066% of A4 aré less than

JA] in absolute value, the series AV

R\ O
5 2, @
N
- is convergent and its sum s the matrix (A —A)™*
'\

1.2. Proof of (IT), OO o

This property is ah ‘example of the general theorem that a
power series in @ miatrix 4 can be expressed as a polynomial
in A. This theOpem proves the result (IT) when |A|1s sufficiently
large to_perfnit (\J—d4)* to be expressed as & POWer series
in 4 apdNn elementary ‘permanence of algebraic identities’
arguent then shows thab the result remains frue provided
seuly'that A is not a latent root of 4.
. \'ti) Let E,, the nth hlvariaa%t- factor of AJ—A4, be of degree
m and have m distinet factors A—o..., A—#- When || exceeds
‘each of [«l,..., [x],

1 i, A A ] ”
A~ X{I+'X+ e
Put f(4) = (\[—A)-* in Theorem 22 (p. 94); this gives
1 | (A—BD)..A4—xD) ©

N—A— 4 Aa (a—f){oe—x)



- 110 MISCELLANEQUS NOTES

Thus (II) is proved when [A] is sufficiently large and, for such
values of ||, (6) gives

) 1 (A—gD).(A—«])
1_(AI~A)ZA__D( (x—B)...{la—x) )

For convenience of writing, let

P(A) = A—a)A—p)...(A—x),

so that () = (=—P)en(x—x); \\\
and let HA)y = A—B)e(A—x). ) Oy
The equation (7) then is ' \ O

VT = AI—4) T 4N AL e ®)

which, as an equation in A, is of degree m. 14 satisfied by an
infinity of values of X and is therefore{ ttne for all A. When
X £ a,..., k&, the matrix AT—4, Which,ba:‘s latent roots A—a,...,

A—x, is non-gingular and, on dividi\h\é\{S) by (A —A)),

MENI o GBI, (A—rD)
M=4 ™ L8 (a=B)nlfo—n)

N

(i) Let B, — (A—o3(x< B)...A—x). When || islarge enough,
expansion {5) holds @g@}\by Chapter V, § 6.21 (p. 96),

0 0 s N pa—Dm—2amd 20—

0 1\ (me—1)am—2 A—a)?

A e o)
oS A | g

R T

C\\f kK . . gL (A—w)?

W o4, . Am-1 (AL—-A4)*

N

N\

AN
where m is the degree in A of E,.

" On expanding this determinant by its last column we obtain
(4), which is thus proved when || is sufficiently large. The proof
for all A not equal to w, B,..., « follows as in (i).

1.3. Proof of (111}
When E, = (A—a)..{A—«)

% This is the argument of elementary scalar algebra applied to each of the
n® scalar equations which malke up the one matriz equation (8).
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the matrix A satisfies the equationf o
(A—al)..(Ad—xl) = 0. (9)
~ The property (ILI) is an immediate consequence of this and of
the fact that the matrices 4 —af,..., A —«I are commutative.
We have seen, in (6) of § 1.2, thab

(A—BD.(A—cD) p (4—ol)A—pl}

Rm e k3 — -—'—_‘___—__-'_’ LA :
@—Blto—r) P (B—a)Brhe AN
The product of any two of B, Rg,... contains A N
(A —al)..(A—x]) {m_;' ‘
as & factor, and =o is the null matrix. Again \,
K7,
(@B @K} ) = (o) P
(m—ﬁ)...(a—-.‘() v
- where P(z) is & polynomial in z. Hence R5Deontains A—al
as & factor and, therefore, e v .

R (R~
contains the factor {4 —al}...(4 ,—;Irci'j, which is the null matbrix. _
Hence R = R, N

1.4. Proof of (IV) a@@\(«ﬁ)
(IV) When ¢ '\\"’AX—— Ax =
and ) is a scalar, & can at once write
o7 a-ax=v |
Proﬁdﬁ‘%?;&: A is not a latent root of 4, this equation has &
uni‘]uf:i' & tion < — OT—A)y. |
es, and particularly the
7, shows that the resulb

$

\ﬁf) 'Our work on functions of matric
“ebservations of Chapter V, § 8.4 and 8.

(A—p) RA)R(p) = R{u)—B@A)’
is obtained by handling the algebraic processes in
1 1 (A—p)d
WA M—4 pI—A)pl—-4)
as though the matrices I and 4 were sealars.

+ Cf. Chap. VIL, § 3, p- 153-
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A proof that avoids such processes is almost as simple. By
definition,
M—A)BY) =1,  (WI—A)Rp)=1I;
whence ARV —I = AR(}),
pR(p)—1I = AR(u),
and so, the matrices involved being commutative,

(A—p) RQ) R{g)— R(w) + RQ) = 0. &
2. Positive-definite quadratic forms subject to linear
conditions o
We propose to find a set of necessary and suflicient condi-
tions that the real quadratic form \\ '
% R Xy Ty \Z4 (1)
n8=1 RN .
ghall be positive when the x, are subjedt’to one or more given
linear conditions of the type O
p1m1+"‘—1~—9‘132t;; = 09 (2)

and at least one 2, is not zero. The general form of these
conditions is ‘well known’ juithe sense that one finds references
to it in books on Diﬁ@enfial Caleulus,t in mathematies for
economists, and in pga}mination papers. I have never found a
printed proof of the result for an arbitrary positive integer %,
" even with onlyt pne restrictive condition (2). 1 therefore in- -
clude among'thése notes} a proof in as simple a form as posgible.
I first wgﬂfwith one linear condition and then indicate, by
consideting two linear conditions, how the problem is solved
W]‘:Lei;\there are m linear conditions.

N , .
"\ 2.1. One lnear condition
We consider (1) when the , are subject to the condition

P2t T, = 0.
Unless the problem is to be unaffected by the condition, one
at least of the p, is not zero. We assume that p, # 0.
1 T. W. Chaundy, The Differential Coleulus (Oxford, 1935), p- 258. See also

{21} on p. 262 for the way in which m linear conditions smtroduce & sign-
factor {(—1y®,

t 8. N. Afviat, Proe. Camb. Phil. Soc. 47 (1951), deals with the problem in
a general form.
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If %y,00s Ty ATE all zero, then also «,, = 0; the reguirerent
that one at least of Xy, be not zero is fulfilled only if one
© OF tyyeeny Xy 18 NOL ZCFO.
Make the transformation

X, =% (r = 1:--*:??-‘_1}:. . (8a)
X, = p1 &t tPpy 38
and let (1) become n :
E 0“'r.‘rXsr;’Ks' . (4K\’\
=1 A o

Since X, = 0 and one at least of X,y Xy 18 mOb zergi' our
‘problem reduces to that of finding conditions that the, form in __

n—1 variables n—1 x'\\.“'
2 amX,.Xs ¥ ,”;\V ()

r5=1 N
be positive-definite. One set of conditions, JI¢eessary and suffi-
cient, for (5) to be positive-definite, is “x\‘ 4 :

SN
Q‘?&\; . . Oyn-1
Y. Q. N/
oy > 0, m M2 =0, L, RN e s e > 0.
o f &R
o RS T R Gy —1,n—1

Tt remains only to expreéé“ﬁhese conditions in terms of the
a,, and p,. Introduce a{{ﬁi‘bher variable @, and consider the
form in n--1 varia,h{és; :

N\

i

>0 (®)
PIR TS 2y By oo t-Pr Fn)Tntte A
sk . .
Transformethis by means of (3) and Xp41 = Fas1- In view of
. e )
(4) it beGorties
i}\{ , E l%erXs"]"an D.SWRT (7)
™I a=1
| .»\T@é.“modulus of the transformation is Py and sof
\/’ Gy - - @n P1 T o
@ . . . . . . — .
o Qpy - + %n Pn g - v Oan 1
Py -+ Pa 0 ¢ . - I 0
oy - v Camd
—_— . - : (8)
Gpoag + ¢ Celald '

+ . 127, ‘Pheorem 39.
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Now consider (6) with ,,_, = 0. It is a form in the n variables
Tyyeers Xpogr Tny Tyyg- LHE transformation {3}, leaving out
%,y = X, has modulus p, and transforms (6) with 2, =0 '
into (7} with X,,_; = 0. Hence

1 Gin-s  Din "
2
Pﬂ a’n—2,1 . . a’n—z,n—‘a a’n—2,n Pn—z '\
a”n,l - * “n,n—z a’ﬂ,,n Pa \\
m v Pa-g Py - 0 \,:”':'
. R N
Q11 O3n—2 o\ 0
S
= | ¥p-91 - “nvz,n—.z"\ Q2.0
Apa . Tpmadyy, Fan 1
0O SR \\Q’ 1
R
- NV
K
a““?’lt’ 3 * . an—?.,n—ﬁ

Similarly for the other deterqﬁ,;iﬁilts, the results being

241 \“fn P

2 ' -
Pn aﬁ&\ o P | = X1,
:\\Pi P O
(@ Gz G Pa
w iy Gan Ton Pa | _ | %11 a2
Ay Qg Q3n Pn tlgy  Oga

P Ps Pu O

and & \on until we reach {8). The condition that (1} be positive

. Wﬁéﬁever_ (2) is satisfied and at least one , is not zero i that

\}he determinants on the left be all negative,
2.2, Two linear conditions
- Let there be two distinet linear conditions
PrLbyt D, = 0,
. DTt ®, = 0, .
and let p, 7 0. Then, as we shall prove, one at least of

Prlr— D 0w (?". = 1., 0— 1)

(2a)
(26)
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is not zero. For if they are all zero, each g, is given by p,ig,/p,)
and every p,q,—p,9. is zero; this is coutrary to the hypothesis
that (2a} and (258} are distinet conditions. We shall assume
that p, 9, 1—8,._19. 7 0. That is, we shall assume

Pn 0 Bulp1—Pu-1Tn F 0 {9)

If (9) holds and also conditions (2a) and (25) hold, at least )
one of %;,..., x,_, is not equal to zero. N\
We may now proceed on the lines laid down in § 2.1. M&ke‘
the transformation A\ W

X, =0 (r= 1y —2), P
: A\
Xn.—l = Q1x1+'"+gnxm R\
X = Pl $1+ ”‘!"Pn n ’\

The modwus of the transformation ;& Py Gy1—Ty-1dn 20 i3

not zero, Let the form M
E a’fs'u;-x;
r,8=1 &
. i1 N
_ become é rx,gX X

Inthis, X, = X, ==\b &nd ot Jeast one of X;,..., X, 18 not

zero, A set of negessary and sufficient conditions for the form
to be poaxtlve 15\

ey . e Q3 n—8
.. > O,

oy > 0, ”‘¥i1 “12
Q Bor O

™3

To  éxpress these in terms of 4, p, 7 We proceed as in § 2.1;
‘k{i;roduce new variables ¥, .y, ¥y and the form

>0, ..,

Gpegy -+ Fn-g2n-2

rsillam @, Ty 2%041(0 S S Zp)+
’ + 2% 5(P1 5y + eur P B )
Transform it as we transformed S, @y, %, g Making Kapy = Fasz
and X, ,, = @,,0. It becomes

3 0 X, X+ 2% s Xt 25 Xnsse

#,8=1
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The modulus of the transformation is p,¢, 1—P,—19, = H,
say, where M 0. Hence

Bn « + Uy 91 M Y 00
ME ey o Gen Gn Pa | = -ty - Ol Lo
C"1-7:.,1 . * Cpm 01
N 0 1 0 00
- - P 00 o . .0 1 0 o
. . ‘\\
11 " . Xpm-2 4 { : N
=4 . . . . .. . (10}
Mp-g1 - « Qgpn-2 '\}1

#

We deal with the other «,, minors by making, i succession,
#,g =0, #, 5= 0,., ¥, = 0. The results dre obtained by
deleting in succession all suffixes n—2, au\ﬁyﬁixes n—3,..., all
suffixes 2; the last result in the sequence is

\\ 3 .
a 11 i 1 B
a’n—l,l a’n—l,’n—l a‘nﬁl\;@:‘ Gn-1 FPn
2 N —
M LR ] Tnm-1 ~jd;n;% In P = Qq-

gl gﬂ—l. ’;::’gﬂ 0 0
pl p'{z.\'{\\ Pﬂ 0 0
Provided that we diave so arranged the variables zy,..., @
that Pr # 0 and, Bn o1 Pp-19n # 0, the form 2&_r3$rxs is
positive—deﬁniige{:;ﬁhder the linear conditions Y p,%, =0,
¥ ¢,%, = 0 wheén the bordered determinants indicated above
are all oﬁ?}ﬁve.

2

O\
3. Sej;} of anti-commutative matrices
I this concluding section we give an elementary introduc-
iont to matrices E,, E,,... which satisfy the equations

B= I, BE - —EE (r+s) (1)
We do this partly to call the attention of the reader to &
particular set of properties and partly to indicate, if only by
one example, how much of interest still remains after the ma-in
lines of a central theory have been covered. Before we consider

1 It is an introduction to the work of Eddington, Newrnan, and oi‘rh_ﬂl‘s:
not an account of that work. See list of reforencos at the end of this section.
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partiular matrices wie note the following general property,
ssmming that sore w01 of matrices has been found to satisfy

{1). We have, at the outaet,

{) aset of mutrices 2 satisfying (1).

We leave asicde for (he moment how many matrices there
may be in a sit. First we note that the product of any two
distinet matrices of (i) is u matrix whose square is ~1I; f{{\

>

~ example, N
(B, ENE 1) ~BEEE=B=—L (%~
We thus have a second set \Q
{i) pE,  (BEN=-—I \~

It may or nu 13 not happen that some of these products are
meirices that have already appeared inf (;) Looking at the

wnmutative property we find, by slmgle calenlation, that, for

agiven : .
E, LK, EE, .. »a,re ant1 gommutative,

but K and E, Ef m commutative.

' &
The product of any thrée o> members of (i) is either 1tself a (i)
Tultiplied by 41 0;\1\53 square is I and not —1. :

3.1. ,Matrwes Of brder faro . oend
We use Grqek letters to denote matrices of orderl_ wo and
Arabic lej‘\ 18 1o denote sheir elements, real or cOMPIEx nam-
bers; ¢ 1&(\0f course, 4/(—1)-
— t be
The ¢anonical form of a matrix whaose sqﬂaﬂ-"e is I mus
AN ‘..' dj&g(:ts” j:‘a') o . . .
matrix that is com~

V
] ; s we have & .
but if two like signs are taker:jx ®  order {30 62 d i therefore

mutative with any other mat
with
not relevant to our problem. Qo let us begin

oy = 0 —d : . - .

a b]
LGt - ﬂ:"—-—“‘[c.d

5376 N
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satisfy the condition awy == —ay . Then

at  —bi __[(n' bi
e —di] —c3 —d?l]’

and hence ¢ = d = 0. Further, with

L_TJo
e o
"\

o? = diag(be, bc), so that o = —I requires be = —1. ‘T]shs

matrix o, satisfying (\D
o = —1, g fp = 00y ‘”\

is given by ay == [_?)r_l i;”] ’ \\\
If now we take two such matrices and Kegui;';e that

| Gy g = ‘_:\?:s\ar;\
we find that b byt = <h,5;71,
ie. byl +i. |
If we choose a definite rpéii”vr“alue for b,, any b, is pure imagi
ary; and conversely,Taking b, = —1, by = ¢, we have th:

matrices oy, o, og ,ga}bisfying (1) given by

i 0 0 —1 0 i
a= 1oyl 2T o T Lo
N4
The copdition (2) ensures that we can have three and no m¢

in sueh & set. Moreover,

N\ — — _,
W\ Qg g — —Xy, Qg == —qg, o ol == ——0Olg.

ad
NS

(" 3.2. Marices of order four

1If we look for solutions of (1) in which , is a matrix of order fc
the most systematic way is probably to follow Newman’s meth
to show that the canonical form of any F, must be diag(i,?, —%
and o take E, as diag(il,, —iL). In writing this introductory acco
I thonght it might be interesting to build up the set of five mate
given by Jeffreys and Jeffreys in Methods of Mathematical Physi

We use capital letters to denote matrices of order four 2
Gireck letters to denote matrices of order two. Some details

t p. 138,



MISCELLANEOUS NOTES 179

subsidiary caleulations are omitted: the reader will need to fill
these in for himself.

The matrices diag{-ta,, 4-a,) offer themselves at once a8
possible members of an anti- commutative set of square roots
of —I,. We start withj

E = [oq 0.]’ B, = [0‘03 :;],
0 oy .\
leaving E, for the moment.
' {
A matrix E= [0 ﬁ] A\
y O N
will be anti-commutative with both & and E\lf B and y are

anti-commutative with both o and o To ﬁﬂd sach matrices
B and y let \ v

s—[ggil:

Then (by § 3.1)  is anti- commukatlve with o,; it is anti-com-
mutative with o if & = —d
We see now that we czmnot take K, = diaglay, ) a8 one of
our set to satisfy (1}\\1'01' this will be anti- commutative with
E above only if ,Q\a,nd y are anti- commutative with op; and
wf = ﬂﬁaz}equues b — d. We therefore fake
£ ".\ B, = diag{ay, —op)s

. ;\s..
Witl\’ohié;' choice for By, any matrix

O
,f&,\ E:[O ﬂ],
N” ) v 0
N\

o & 0 ¢
where Bz[—b 0]’. ys[——o 0]’

is anti-commutative with Fi, B,, and s . e )
The square of B i diag(By, By} and By = diag(— ¢, c}.

Hence B = dmg(-bc, —be, —be, —be)

a,amthamatrices

+ The 0°s denote null sub-matriees of order two and oy, %
of the previous gub sectmn
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satisfy the condition ey = —oye. Then

ai —b@] _ __[ ar bi
et —di] —ci -—di]’

and hence @ = 4 = 0. Further, with

=[2 o)

s <\
of = diag{be, be), so that o? = —I requires be = —1. Thus\}
matrix «, satisfying R,

L)
of = —1I, X Oy == o, ~\ e
is given b _[ 9 & ¢ \\\
gl y a" —b,;.-l 0 - K .‘:‘:\
If now we take two such matrices and re({ui,re that

X g = _a.{%i\j 4
we find that byt = —bLOrY,
ie. A RESNR (2)
If we choose a definite reak¥alue for b, any b, is pure imagin-
ary; and conversely. Taking b, = —1, by =14, we have three

matrices o, g, oy sotisfying (1) given by

3 20 o0 —1 [0 1:}
oy = 9, 0y — 0y = | . .
L 0\— il’ 2 1 o\l . 0

The condi;t’(i‘én' (2) ensures that we can have three and no more
in such\hget. Moreover

AN By = —oyy, OgXy TS wlg G ¥ = T
AN
<‘~; *3.2. Matrices of order four
/" 1¢ we look for solutions of {1) in which &, is & matrix of order four,
- the most systematic way is probably to follow Newrnan's methodf.
to show that the canonical form of any B, must be diag(?, & —% —1i)
and to teke E, as diag(ify, —il,). In writing this introductory account
I thought it might be interesting to build up the set of five ma.tr_ices
given by Jeffreys and Jeffreys in Methods of M. athematical Physics.t

We use capital letters to denote matrices of order four and
Greek letters to denote matrices of order two. Some details of

T p. 138
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subsidiary calculations are omitted: the reader will need to fill
these in for himself. _

The matrices diag{-tw,, 4-a,) offer themselves at once as
possible members of an anti-commutative set of square roots
of —1,, We start witht

B — [cxl 0 7 | OJ ' -
1 0 ol : 0 agj . O\
N
leaving E, for the moment. O
: 0 oY
A matrix E= [ ﬁ] A
y 0 A

will be anti-commutative with both K, and Esﬁfﬁ and y aré
anti-commutative with both «; and ay. To ﬁnd such matrices

B and y let . o b x\
d 0

Then (by § 3.1) B is anti- commu’baﬁcwe with a,; 1t is anti-com-
mutative with «, if & = —d.¢

We see now that we cannot take B, = dl&g(otg, ) as one of
our set to satisfy (1): for this will be anti-commutative with
£ above only if B ad'y are anti-commutative with oty and
g = —fay Teqmres b = d. We therefore take

\ E, = diag(op, — o).
With t};ugch\ome for B,, any matrix

N \." vy O
0 b ¢ ¢
\ghere B = [—b 0],‘ y = [-—c 0]:

is anti-commutative with &, E,, and F;. b be)
The square of £ is dlag(rg%ﬁ‘y) and By = diag(—0b¢, —00).

Heneo B2 = diag(——bc, —be, —be, —be)

frices
t The 0’z denote null sub-matrices of order two and oy, ®u 2 aro tho s
of the previous sub-section.
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and is equal to —I, if bc = 1. Thus a matrix
0 0 0 &

.

0 0 —b 0
= — 4.5
& o bt o of UTHH
—b7t 0O 0 0
satisfles B2 = —1I and is anti-commutative with Z;, E,, B,
The condition for B, B, = —E,E, is . \Q\
(b.[b,)* = Oy

and two matrices E, and K, can be included in a aet Edtlsfymg
(1} if the ratio b,/b, is +-3. We take b, =1 and Qk— —1 and,
in the order in which they are set out in J; effrcy§ ‘and Jeffreys,t

write the set of five solutions of (1) as \%
E:i d.l&-g(ot:.}, o), d%'g(mlx al
0 0 \4}*‘ i

0 0, K-—f.a, 0
0 = o of
_,z'?&‘D 0 0

B, =

dja‘g(am — )!
\’\ i

) 0 0 0 —1
S S
A B =
N 0 —1 o 0
N 1 0 0 O
ﬁej“’erences
%‘ Eddington, ‘On sets of anticommuting matrices’,

ng‘nal London Math. Soc. 7 (1932), 58-68.
\\ “M. H. A. Newman, ibid. 93-9.
7 H. Jeffreys and B. S. Jeffreys, Methods of Mathematical
Physics (Cambridge, 1946), 136-8.
A, Hurwitz, Math. Ann. 88 (1923), 1-25.
The last of these deals with roots of +1.

t Loe. cit., p. 138.
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